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Interprocedural dataflow analysis is important in compiler optimization, au-

tomatic vectorization and parallelization, program revalidation, dataflow anomaly

detection, and software tools that make a program more understandable by show-

ing data dependencies. These applications require the solution of dataflow problems

such as reaching definitions, live variables, available expressions, and definition-use

chains. When solving these problems interprocedurally, the context of each call must

be taken into account.

In this dissertation we present a method to solve this kind of dataflow problem

precisely. The method consists of special dataflow equations that are solved for a

program flowgraph. Regarding calling context, separate sets, called entry and body

sets, are maintained at each node in the flowgraph. The entry set contains calling-

context effects that enter a procedure. The body set contains effects that result

from statements in the procedure. By isolating calling-context effects in the entry

set, a call's nonkilled calling context is preserved by means of a simple intersection

operation done at the return node for the call.
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Slicing determines program pieces that can affect a value. Logical ripple effect

determines program pieces that can be affected by a value. Both slicing and logical

ripple effect are useful for software maintenance. The problems of slicing and logical

ripple effect are inverses of each other, and a solution of either problem can be inverted

to solve the other. Precise interprocedural logical ripple effect analysis is complicated

by the fact that an element may be in the ripple effect by virtue of one or more specific

execution paths. In this dissertation we present an algorithm that builds a precise

logical ripple effect or slice piece by piece, taking into account the possible execution

paths. The algorithm makes use of our interprocedural dataflow analysis method,

and this method is also used in an algorithm given in this dissertation for identifying

loops that can be parallelized.

VI
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CHAPTER 1

INTRODUCTION

1.1 Interprocedural Dataflow Analysis

Dataflow analysis refers to a class of problems that a^k about the relationships

that exist along a program's possible execution paths, between such program ele-

ments as variables, constants, and expressions [2, 10]. When dataflow analysis is

done for a program by treating its individual procedures as being independent of

each other, regardless of the calls made, this is known as intraprocedural analysis.

For intraprocedural analysis, assumptions must be made about the effects of calls.

By contrast, interprocedural analysis replaces assumptions with specific information

about the effects of each call. This information can be gathered by either flow-

sensitive [3, 6, 9, 17, 19, 21] or flow-insensitive [4, 7, 18] analysis. When answering

a dataflow question, a flow-sensitive analysis will take into account the flow paths

within procedures, whereas a flow-insensitive analysis ignores these flow paths. The

flow paths are the possible execution paths. Flow-sensitive analysis typically provides

more precise information, but at greater cost.

Flow-sensitive interprocedural dataflow analysis has two major problems that

make it significantly harder than intraprocedural analysis. First, in intraprocedural

analysis, it is assumed that any path in the flowgraph is a possible execution path.

By contraist, for interprocedural analysis, it is useful to assume that the possible

execution paths conform to the rule that once a procedure is entered by a call, the

flow returns to that call upon return. Thus, the set of possible execution paths will

typically be a proper subset of the paths in the program flowgraph. This problem
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will be referred to as the calling-context problem. Second, call-by-reference formal

parameters typically cause alias relationships between actual and formal parameters

that are valid only for certain calls and apply only to those passes through the called

procedure that originate from those calls that establish the specific alias relationship.

There are many applications for a flow-sensitive interprocedural dataflow anal-

ysis method that solves the two major problems, assuming that the costs of the

method are not too high. Some of the well-known dataflow problems that can be

precisely solved by such a method are reaching definitions, live variables, the related

problems of definition-use and use-definition chains, and available expressions. Ap-

plications that require the solution of one or more of these dataflow problems include

compiler optimization, automatic vectorization and parallelization of program code,

program revalidation, dataflow anomaly detection, and software tools that show data

dependencies.

In this dissertation we present a new method for flow-sensitive interprocedural

dataflow analysis that solves the two major problems, and does so at a comparatively

low cost [13]. The method consists of special dataflow equations that are solved for

a program flowgraph. In deference to calling context, separate sets, called entry and

body sets, are maintained at each node in the flowgraph. The entry set contains

calling-context effects that enter a procedure. The body set contains effects that

result from statements in the procedure. By isolating calling-context efl"ects in the

entry set, a call's nonkilled calling context is preserved by means of a simple inter-

section operation done at the return node for the call. The main advantage of our

method is its low complexity, and the fact that the presence of recursion does not

affect the preciseness of the result.

The language model assumed for Chapter 2 allows global variables, but the

visibility of each formal parameter is limited to the single procedure that declares
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it. Thus, with the exception of a call and its indirect reference, each formal pa-

rameter can only be referenced inside a single procedure. Examples of programming

languages that fit this model are C and FORTRAN. This restriction on the visibility

of formal parameters is imposed for the sake of the discussions of element recoding

in Sections 2.2.2 and 2.3, of implicit definitions in Section 2.2.3, and of worst-case

complexity in Section 2.5. Our method can also be used for the alternative language

model that allows each formal parameter to have visibility in more than a single

procedure, but this is considered only briefly at the end of Section 2.5.

1.2 Slicing and Logical Ripple Effect

Given an actual or hypothetical variable v at program point p, determine all

program pieces that can possibly be affected by the value of v at p. This is the logical

ripple effect problem. Given v and p, determine all program pieces that can possibly

affect the value of v at p. This is the slicing problem. For these two problems, each

problem is the inverse of the other, and a solution for one of these problems, once

inverted, would be a solution for the other problem.

Logical ripple effect is useful for helping a programmer to understand how a

program change, either actual or hypothetical, will impact that program. Making

program changes as part of routine maintenance often introduces new errors into the

changed program. Such errors typically result because the programmer overlooked

some part of the logical ripple effect for that change. By showing a programmer what

the logical ripple effect actually is for a program change, mistakes can be avoided.

Slicing is primarily useful for program fault localization [23]. If a variable v at

point p is known to have a wrong value, then a slice on t; at p will narrow the search

for the cause of the error to that part of the program that can truly affect v at p.

Thus, the fault is localized. The more precise the slice, the more localized the cause

of the error, saving programmer time.
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In this dissertation we are concerned only with static logical ripple effect and

slicing [11, 12, 16, 24] where the ripple effect or slice is determined from dataflow

analysis of the program text. The alternative approach is dynamic logical ripple

effect and slicing [1, 14] where the ripple effect or slice is determined by actually

executing the program. Whenever we speak of execution paths in Chapter 3, we

always mean possible execution paths as determined by dataflow analysis.

Precise interprocedural logical ripple efTect analysis is complicated by the fact

that a definition may be added to the ripple effect because of one or more specific

execution paths. To determine in turn the ripple effect of that added definition,

that definition should be constrained to those execution paths that are the possible

continuations of the execution paths along which that definition was itself affected

and thereby added to the ripple effect. We refer to this as the execution- path problem.

In particular, it is those call instances made in an execution path P that have

not been returned to in P that cause the difficulty. This is because of the rule that a

called procedure returns to its most recent caller. This means that any continuation

of the execution path P must first return to those unreturned calls in P before returns

can possibly be made to call instances that precede P. An example will illustrate the

problem.

p

b

1

2

rocedure i

egin

f ^ 7

call A

main procedure B
begin

6: y ^ f + 5

end

procedure A
begin

7: call B
8: X ^ y

3

4

z <— X

f ^ 1

end

5 call B
end

For the example, assume that all variables are global, and that the problem is to

determine the logical ripple effect for the definition of variable / at line 4. The call
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to procedure B at line 5 allows the definition of / at line 4 to affect the definition of

y at line 6, and the return of procedure B would be to the call at line 5 by which the

definition of y at line 6 was affected. The end result is that the ripple effect should

include only line 6. However, assume that the execution-path problem is ignored and

all returns are possible when the ripple effect is computed. For the same problem, the

call at line 5 allows the definition of / at line 4 to affect the definition of y at line 6.

Then the definition of y at line 6 affects the definition of x at line 8 by procedure B

returning to the call at line 7 in addition to the call at line 5. Then the definition of

X at line 8 affects the definition of z at line 3 by procedure A returning to the call at

line 2. The end result is a ripple effect that includes lines 3, 6, and 8, but only line 6

should be in the ripple effect.

Although there are a number of papers on logical ripple effect and slicing

[11, 12, 16, 24], there appears to be only one [11] that addresses the problems of

precise interprocedural logical ripple effect and slicing, and presents a method for it.

Weiser [24] was the first to propose an interprocedural slicing method that ignores

the execution-path problem and thereby suffers from the resulting loss of precision.

Horwitz et al. [11] address the problem of precise interprocedural slicing, and present

a method to construct a system dependence graph from which slices can be extracted.

In this dissertation we present an algorithm that builds the logical ripple eifect

piece by piece, and takes into account the restrictions on execution-path continuation

that are imposed by the preceding execution paths up to the point by which the given

program piece is affected and thereby included in the ripple effect. In general, the

algorithm computes a precise logical ripple effect, but some overestimation is possible,

meaning that the computed logical ripple effect may be larger than it actually is. An

inverse form of the algorithm is presented for the slicing problem. The languages

that our algorithm will work for include many of the common procedural languages

such as C, Pascal, Ada, and Fortran.
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1.3 Parallelization

Automatic conversion of a sequential program into a parallel program is often

referred to as parallelization. Parallelization problems are typically concerned with

the conversion of sequential loops into parallel code. In this dissertation, the specific

problem considered is the identification of loops in a program that can be parallelized,

including those loops that contain calls. A flow-sensitive interprocedural dataflow

analysis method has specific applicability to the problem of parallelizing loops that

contain calls, because such a method can supply the precise data-dependency infor-

mation that would be necessary for the parallelization analysis.

The parallelization of a loop would mean that each iteration of the loop can

be executed independently of the other iterations of the loop. In theory, this would

mean that each single iteration, or each arbitrary block of iterations, can be assigned

to a separate processor in a parallel machine. The specific architecture of a particular

parallel machine, as well as the programming language to be parallelized, as well as

the various loop transformations that are possible to convert sequential loop code into

functionally equivalent sequential code that is more parallelizable, will influence the

determination in any parallelization tool as to what loops can actually be parallelized,

and how they would be parallelized. However, none of the architecture, language,

and loop-transformation issues will be considered here. Instead, the problem will be

considered solely from the standpoint of data dependence.

After a brief review of the basics regarding data dependence and parallelization,

an algorithm is given that identifies loops in a program that can be parallelized, and

this algorithm uses our interprocedural dataflow analysis method as an integral part.

The potential value of parallelization is clear. On the one hand, parallel machines

are becoming more common, and on the other hand, a great number of sequential

programs already exist, some of which can benefit from the greater processing power

that parallelization would offer.
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1.4 Literature Review

Different methods have been offered for solving various flow-sensitive interpro-

cedural dataflow analysis problems. Sharir and Pnueli [21] present a method they

name call-strings. The essential idea of their method is to accumulate for each ele-

ment a history of the calls traversed by that element as it flows through the program

flowgraph. The call history associated with an element is used whenever that element

is at a return point. The element can only cross back to those calls in its call history.

Thus, the call-strings approach provides a solution to the calling-context problem.

However, the disadvantage of this approach is the time and space needed to maintain

a call history for each element at each flowgraph node.

Let / be the program size. We assume that the number of elements will be

a linear function of /. The worst-case number of total set operations required by

the call-strings approach would be greater by a factor of / when compared to our

method. This is because for each union or intersection of two sets of elements, if the

same element is in both sets, then a union operation must also be done for the two

associated call histories so as to get the new call history to be associated with that

element at the node for which the set operation is being done. A further disadvantage

of the call-strings approach is the need to include the associated call histories when

set stability is tested to determine termination for the iterative algorithm used to

solve the dataflow equations.

Myers [17] offers a solution to the calling-context problem that is essentially the

same as call-strings. Allen [3] presents a different method for interprocedural dataflow

analysis. The method analyzes each procedure completely, in reverse invocation

order. The first procedures to be analyzed would be those that make no calls, then

the procedures that only call these procedures would be analyzed, and so on. Once a

procedure is analyzed, its effects can be incorporated into those procedures that call
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it, when they in turn are analyzed. The obvious drawback of this method is that it

cannot be used to analyze recursive calls.

Rosen [19] presents a complex method for interprocedural dataflow analysis

that is limited to solving the problems of variable modification, preservation, and use.

These dataflow problems do not require a solution of the calling-context problem.

Callahan [6] has proposed the program summary graph to solve the interproce-

dural dataflow problems of kill and use, where kill determines all definite kills that

result from a procedure call, and use determines all variables that may be used as a

result of a procedure call before being redefined.

As part of the determination of edges in the program summary graph, intrapro-

cedural reaching-definitions analysis must be done for each procedure. Simplifying

Callahan's space complexity analysis, we get 0{vgal) as the worst-case size of the

program summary graph, where Vga is the number of global variables in the program

plus the average number of actual parameters per call, and / is the program size. One

limitation of Callahan's method is that it does not correctly handle multiple aliases

that result when the same variable is used multiple times as an actual parameter

in the same call and the corresponding formal parameters are call-by-reference. By

contrast, our method, using element receding where all the aliases are encoded in a

single element, will correctly handle the multiple aliases problem.

Callahan's method offers no solution to the calling-context problem, and could

not be used to determine, for example, interprocedural reaching definitions. However,

Harrold and Soffa [9] have extended his method so that interprocedural reaching

definitions can be determined. They use an interprocedural flowgraph, denoted IFG,

that is very similar to the program summary graph. The IFG has inter-reaching edges

that are determined by solving Callahan's kill problem. They recommend using his

method, so their method inherits Callahan's space and time complexity, as well as

its limitation with regard to multiple aliases.
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Before the IFG can be used, it must be decorated with the results of intrapro-

cedural analysis done twice for each procedure to determine both reaching definitions

and upwardly exposed uses. Then an algorithm is used to propagate the upwardly

exposed uses throughout the IFG. This algorithm has worst-case time complexity

of O(n^) where n is the number of nodes in the IFG. Their graph will have the

same number of nodes as for Callahan's graph, meaning worst-case graph size will be

0{vgj). Substituting VgJ for n, we get a worst-case time complexity of 0{v'^J^). As

the size of our flowgraph is proportional to the size of the program, the worst-case

time complexity for solving our equations is only 0{P).

Weiser [24] was the first to propose an interprocedural slicing method that

ignores the execution-path problem and thereby suffers from the resulting loss of

precision. Horwitz et al. [11] have presented a method to compute the more precise

slice explained in the Introduction. However, they use a more restricted definition

of a slice. Their slice is all statements and predicates that may affect a variable

V at program point p, such that v is defined or used at point p. Their method

consists of constructing a specialized graph called a system dependence graph. Nodes

in this graph represent program pieces such as statements, and the edges in the

graph represent control or data dependencies. Edges representing transitive data

dependencies that are due to procedure calls are computed by first modeling each

procedure and its calls with an attribute grammar called a linkage grammar, and then

solving the grammar so as to determine the transitive data dependencies represented

by it. Once the system dependence graph is complete, any slice based on an actual

definition or use occurring at any point p in the program can be extracted from the

graph. A major weakness of their method is that it does not allow a hypothetical

use to be the starting point of the slice.

The complexity of constructing the system dependence graph is given as 0{G •

X -D^) where G is the total number of procedures and calls in the program, X is the
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total number of global variables in the program plus a term that can be considered

a constant, and D is a linear function of X. Once the system dependence graph

is complete, any particular slice that is wanted can be extracted from the graph at

complexity 0{n) where n is the size of the graph. The size of the graph is roughly

quadratic with program size, being bounded by 0{P • {V -\- E) -^^ T • X) where P is

the number of procedures, V is the largest number of predicates and definitions in a

single procedure, E is the largest number of edges in a procedure dependence graph,

T is the number of calls in the program, and X is the number of global variables. In

their paper, much is made of the fact that once the graph is complete, any slice on

an actual definition or use can be extracted from the graph at 0{n) cost where n is

the size of the graph. However, the number of actual definition and use occurrences

in a program is proportional to the program size L. Therefore, any method that can

compute a slice at cost 0{Z) for some Z, can generate all the slices contained in their

graph at cost 0{Z L), spool the sHces to disk, and recover them at cost 0(1).

Although there are many papers on slicing, it seems that only Horwitz et al.

[11] discuss clearly the problem of the more precise interprocedural slice, and present

a method to compute it, as well as providing complexity analysis. Our research on

slicing is only concerned with computing the more precise slice, so Horwitz et al. is

the principal reference.

Zima and Chapman [25] is the principal reference used to study the issues and

methods of parallelization. Their book distills the work found in scores of papers

and dissertations, and is an excellent survey of parallelization. Interprocedural par-

allelization is specifically considered by Burke and Cytron [5], and by Triolet et al.

[22].
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1.5 Outline in Brief

This introductory chapter ends with a brief synopsis of the remaining chapters.

Chapter 2 presents in detail our interprocedural dataflow analysis method. The chap-

ter ends with a brief description of the prototypes that were built to demonstrate the

method, along with some of the experimental results obtained from these prototypes.

Chapter 3 begins with a representation scheme for continuation paths for the inter-

procedural logical ripple effect problem and then presents our interprocedural logical

ripple eifect algorithm. A prototype that was built to demonstrate this algorithm is

briefly described and experimental results are presented. An inversion of the logical

ripple effect algorithm is then presented as a solution to the interprocedural slicing

problem. Chapter 4 begins with an explanation of loop-carried data dependence and

its relevance to parallelization, and concludes with an algorithm that identifies loops

that can be parallelized, including loops that contain calls. Chapter 5 summarizes

the major results of the dissertation, and suggests directions for future research.
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CHAPTER 2
THE INTERPROCEDURAL DATAFLOW ANALYSIS METHOD

2.1 Constructing the Flowgraph

This section discusses the flowgraph and its relationship to dataflow equations.

After the discussion, rules are given for constructing the specific flowgraph required

by our interprocedural analysis method. Note that the required flowgraph is con-

ventional and the rules to be given relate only to the representation of calls and

procedures in the flowgraph.

A flowgraph is a directed graph that represents the possible flow paths of a

program. The nodes of a flowgraph correspond to basic blocks in the program. A

basic block is a sequence of program code that is always executed together in the

same order. The directed edges of a flowgraph represent possible transfers of control.

Figures 2.1 and 2.3 each represent a flowgraph.

Dataflow problems are often formulated as a set of equations that relate the four

sets, 7A'', OUT, GEN, and KILL, that are associated with each node in the flow-

graph. For any node and its block, the GEN set represents the elements generated

by that block. The KILL set represents those elements that cannot flow through the

block, because they would be killed by the block. The IN set represents the valid

elements at the start of the block, and the OUT set represents the valid elements at

the end of the block.

Dataflow problems are typically either forward-flow or backward-flow. For

forward-flow, the IN set of a node is computed as the confluence of the OUT sets

of the predecessor nodes, and the OUT set is a function of the node's IN, GEN,

12
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and KILL sets. For backward-flow, the OUT set of a node is computed as the con-

fluence of the IN sets of the successor nodes, and the IN set is a function of the

node's OUT, GEN, and KILL sets. The predecessors of any node n are those nodes

that have an out-edge directed to node n. The successors of node n are those nodes

that have an in-edge directed from node n. The confluence operator will almost in-

variably be either set union or set intersection, depending on the problem. Thus, a

dataflow problem may be classified as being either forward-flow-or, forward-flow-and,

backward-flow-or, or backward-flow-and, where "or" refers to set union and "and"

refers to set intersection.

Once the dataflow equations have been defined for a particular problem, and

the rules established for creating the GEN and KILL sets, the equations can then

be solved for a specific program or procedure and its representative flowgraph. To

solve the equations, the iterative algorithm can be used. The iterative algorithm has

the advantage that it will work for any flowgraph.

The iterative algorithm repeatedly computes the IN and OUT sets for all nodes

until all sets have stabilized and ceased to change. Recomputation of a node is

necessary whenever an outside set that it depends on changes. For forward-flow

problems, a node must be recomputed if the OUT set of a predecessor node changes.

For backward-flow problems, a node must be recomputed if the IN set of a successor

node changes. Typically, an evaluation strategy will determine the actual order in

which nodes are recomputed.

The flowgraph required by our interprocedural analysis method is conventional,

with special nodes and edges as follows. For each procedure in the program, assign

an entry node and an exit node. These nodes have no associated blocks of program

code.

The entry node has a single out-edge and as many in-edges as there are calls

to that procedure in the program. The exit node has as many in-edges as there are
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nodes for that procedure whose blocks terminate with a return action. The exit node

has as many out-edges as there are calls to that procedure in the program. For every

in-edge of the entry node, there is a corresponding out-edge of the exit node.

For the purpose of constructing the flowgraph, calls must be classified as either

known or unknown. A known call is where the flowgraph for the called procedure

will be a part of the total flowgraph being constructed. An unknown call is where

the flowgraph of the called procedure will not be a part of the total flowgraph being

constructed. Unknown calls are common and will occur for two reasons. First, the

called procedure may be a compiler-library procedure for which source code is not

available. Second, the called procedure may be a separately compiled user procedure

for which the source code is not available.

For any unknown call made within the program, if summary information of its

interprocedural effects is not available, then conservative assumptions about its effects

will have to be made. The actual summary information needed, and the assumptions

made in its absence, will depend on the particular dataflow problem. The summary

information, if present, would be used when constructing the GEN and KILL sets

for any node whose block contains an unknown call.

For any known call made within the program, there will be two nodes in the

flowgraph for that call. One node is the call node. The call node represents a basic

block that ends with the known call. The other node is the return node. The return

node has an empty cissociated block.

The call node will have two out-edges. One edge will be directed to the entry

node of the called procedure. The other out-edge will be directed to the return node

for that call. The return node will have two in-edges. One edge is the directed edge

from the call node. The other in-edge is directed from the called procedure's exit

node.
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In all, each known call results in two nodes and three distinct edges. One edge

connects the call node to its return node. A second edge connects the call node to

the called procedure's entry node. A third edge connects the called procedure's exit

node to the return node.

In constructing the flowgraph, a special problem arises if the programming lan-

guage allows procedure-valued variables, such as the function pointers of C that when

dereferenced result in a call of the function that is pointed at. The problem is to

identify what are the possible procedure values when the procedure-valued variable

invokes a call. Assuming this information is available from a separate analysis, the

flowgraph can be constructed accordingly. For example, if the procedure-valued vari-

able can have three different values when the call in question is invoked and each

value is a procedure whose flowgraph will be part of the total flowgraph, then three

known calls would be constructed in parallel with a common predecessor node for

the three call nodes and a common successor node for the three return nodes.

A procedure-valued variable is in essence a pointer. Note that the problem of

determining what a pointer is or may be pointing at when that pointer is dereferenced,

can itself be formulated as a dataflow problem, and in particular as a forward-flow-or

dataflow problem. If necessary, an initial version of the flowgraph could be con-

structed that treats all calls invoked by procedure-valued variables as unknown calls,

followed by a solving of the dataflow problem for determining possible pointer values

whenever a pointer is dereferenced, followed by amendments to the flowgraph using

the pointer-value information.

Dataflow analysis makes a simplifying, conservative assumption about the cor-

respondence between paths in the flowgraph and possible execution paths in the pro-

gram. Let a path be a sequence of flowgraph nodes such that in the sequence node

n follows node m only if n is a successor of m in the flowgraph. For intraprocedural
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analysis, the assumption made is that any path in the flowgraph is a possible execu-

tion path. That this assumption may not be true for a particular program should be

obvious. However, the problem of determining the possible execution paths for an

arbitrary program is known to be undecidable. The simplifying assumption that we

use for interprocedural analysis is the same as that used for intraprocedural analy-

sis, but with the added proviso that for any path that is a possible execution path,

any subsequence of return nodes must inversely match, if present, the immediately

preceding subsequence of call nodes. A return node matches a call node if and only

if the return node is the call node's successor in the flowgraph.

2.2 Interprocedural Forward-Flow-Or .Analysis

This section begins with our basic approach to solving the calling-context prob-

lem. The dataflow equations for forward-flow-or analysis are then given and their

correctness is shown. As a part of our interprocedural analysis method, the tech-

nique of element recoding is presented as a way to deal with the aliases that result

from call-by-reference formal parameters. For some dataflow problems, implicit defi-

nitions due to calls require explicit treatment, and this is discussed last.

If certain problems, such as reaching definitions, are to be solved for a program

by flow-sensitive interprocedural analysis, then the calling context of each procedure

call must be preserved. In general, preserving calling context means that the dataflow

effects of an individual call should include those effects that survive the call and were

introduced into the called procedure by the call itself, but not those effects introduced

into the called procedure by all the other calls to it that may exist elsewhere in the

program. We refer to the need to preserve calling context as the calling-context

problem.

Our solution to the calling-context problem—and the essential difference be-

tween our dataflow equations and conventional dataflow equations—is to divide every

IN set and every OUT set into two sets called an entry set and a body set. The reason
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for having two sets is that the calling-context effects that enter a procedure from the

different calls can be collected and isolated in the separate entry set. This entry set

can then have effects in it killed by statements in the body of the procedure, but no

additions are made to this entry set by body statements. Instead, any additions of

effects due to body statements are made to the separate body set. This body set

will also have effects killed in the normal manner, as for the entry set. Because the

body set is kept free of calling-context effects, it is empty at the entry node. By

contrast, the entry set is at its largest at the entry node and will either stay the same

size as it progresses through the procedure's body nodes, or become smaller because

of kills. By intersecting the calling context at a call node with the entry set at the

exit node of the called procedure, the result is that subset of the calling context that

has reached the exit node and therefore will reach the return node for that call. By

"reach" we mean that there exists a path in the flowgraph along which the element

is not killed or blocked.

2.2.1 The Dataflow Equations

The dataflow equations that define the entry and body sets at every node are

now given. The equations are divided into three groups. The first group computes

the sets for entry nodes. The second group computes the sets for return nodes. The

third group computes the sets for all other nodes. In the equations, B denotes a

body set and E denotes an entry set. Two conditions, Ci and C2, appear in the

equations. Ci means that x will cross the interprocedural boundary from call node p

into the called procedure. C2 means that x can cross the interprocedural boundary

from exit node q into return node n. d means not C,. For each node n, pred{n)

means the set of predecessors of n. The RECODE set used in Group I is explained

in Section 2.2.2. The GEN set used in Group I, and the GEN and KILL sets used

in Group II, are explained in Section 2.2.3.
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For any node n.

IN[n] = E^n]uBi4n]

OUT[n] = E,^t[n] U B,„t[n]

Group I: n is an entry node.

Bin[n] =

Ein[n]= U {x
\
X e OUT[p] A Ci}

p G pred{n)

Boutin] = GEN[n]

Eout[n] = Ein[n] U RECODE[n]

Group II: n is a return node, p is the associated call node and q is the exit node of

the called procedure.

Bin[n] = {x\{xe Bout[p] A (CT V (Ci A C2 A a: € E^utlq]))) V (x € Bout[q] A C2)}

E,n[n] = {xe Eout[p]
I

C7 V (Ci A C2 A a; e Eout[q])}

Boutin] = (5.„[n] - KILLin]) U GEN[n]

Eoutin] = Ei^n] - KILLin]

Group III: n is not an entry or return node.

5,„[n] = U Boutip]

p G pred{n)

E,4n] =
\J Eo^tip]

p G pred{n)

Boutin] = (5.n[n] - KILLin]) U GENin]
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EoAn] = Ein[n] - KILL[n]

The equations assume that the GEN and KILL sets for each call node will

include only those effects for that call that occur prior to the entry of the called

procedure. This requirement is necessary because the OUT set of the call node is

used by the entry-node equation that constructs the entry set of the called procedure.

Referring to conditions Ci and C2, the rules for deciding whether an effect

crosses a particular interprocedural boundary will depend on two primary factors,

namely the dataflow problem and the programming language. For example, for the

reaching-definitions problem and a language such as FORTRAN, any definition of a

global variable, and any definition of a variable that is used as an actual parameter

whose corresponding formal parameter is call-by-reference, will cross. As a rule, an

effect that crosses into a procedure because it might be killed, will also cross back to

the return node if it reaches the exit node of the called procedure.

Table 2.1 shows the result of solving the equations for the flowgraph of Fig-

ure 2.1. By "solving" we mean that, in effect, the iterative algorithm has been used

and all the sets are stable. The dataflow problem is reaching definitions, and variable

w is local while variables x, y, and z are global. Reaching definitions is the problem

of finding all definitions of a variable that reach a particular use of that variable,

for all variables and uses in the program. In Figure 2.1, nodes 1 and 8 are entry

nodes, nodes 7 and 10 are exit nodes, nodes 3 and 5 are call nodes, and nodes 4 and

6 are return nodes. Alongside each node is its basic block. Each defined variable is

superscripted with an identifier that is the set element used in Table 2.1 to represent

that definition.

The correctness of the equations can be seen from the following observations.

For a procedure, the entry-node entry set is constructed as the union of all calling-

context effects that can enter the procedure from its calls. Within the procedure

body, effects in the entry set can be killed, but not added to. For effects in the entry
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procedure main

begin

w = 5

x = 10

if(w > x)

z=10
call f()

else

y = 5

call f()

end

Z4=10
call f()

procedure f()

begin

x=10
end

X2=10
if(w > x)

y3 = 5

call f()

Figure 2.1. A reaching-definitions example.
.' ''-<.;



www.manaraa.com

X

21

Table 2.1. Solution of forward-flow-or equations for Figure 2.1.

Node Ein Eout Bir. Bout

1

2 {1,2}
3 {1,2} {1,2,4}
4 {1,4,5} {1,4,5}
5 {1,2} {1,2,3}
6 {1,3,5} {1,3,5}
7 {1,3,4,5} {1,3,4,5}
8 {2, 3, 4} {2, 3, 4}

9 {2, 3, 4} {3,4} {5}

10 {3,4} {3,4} {5} {5}

set that reach a call at a call node, those effects that survive the call are recovered

in the entry set constructed by the Ein[n] equation for the successor return node n.

To see that this is true, observe the following. If an entry-set effect that reaches

the call cannot enter the called procedure, then it cannot be killed within the called

procedure, so the effect should be added to the return-node entry set without further

conditions, and this is done by the selection criterion (x G £'out[p] A CT) in the £',„[n]

equation for the return node. If, on the other hand, an entry-set effect reaches the

call and does enter the called procedure, and therefore may be killed by it, then this

effect should be added to the return-node entry set only if it reached the entry set of

the called procedure's exit node and the effect can cross back into the caller. This is

done by the selection criterion (x G Eout[p] A Ci A Cj A x G Eont[q]) in the £',„[n]

equation for the return node.

From the equations for the entry set, we see that for any procedure z, the

entry set at z's exit node will, as the equations are solved, eventually contain all

calling-context effects that entered z and reached its exit node. This characteristic

of the exit-node entry set is the requirement placed upon it when it is used in the
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£',„[n] equation for the return node, so this requirement is satisfied and the entry-set

equations are correct.

For any procedure, the Bin set is always empty at the entry node, so the B set

is free of calling-context effects. Within the procedure body, GEN and KILL sets

are used to update the body set as it propagates along the various nodes. For effects

in the body set that reach a call at a call node, those effects that survive the call are

recovered in the body set constructed by the 5,n[n] equation for the successor return

node n. If a body-set effect that reaches the call cannot enter the called procedure,

then it cannot be killed within the called procedure, so it should be added to the

return-node body set without further conditions, and this is done by the selection

criterion (x G Bout[p] A Ci) in the 5,„[n] equation for the return node. If, on the

other hand, a body-set effect reaches the call and will enter the called procedure,

and therefore may be killed by it, then this effect should be added to the return-

node body set only if it reached the entry set of the called procedure's exit node

and the effect can cross back into the caller. This is done by the selection criterion

{x G 5out[p] A Ci A C2 A X G Eout[c[]) in the B,n[n] equation for the return node. In

addition, all crossable effects that result from the call, and that are independent of

calling context, should also be added to the return-node body set, and this is done by

the selection criterion (x G Boutin] A C2) in the -S,„[n] equation for the return node.

From the equations for the body set, we see that for any procedure z, the body

set at 2's exit node is free of calling-context effects and will, as the equations are

solved, eventually contain all body effects that reached the exit node, including those

body effects resulting from calls made within z. This characteristic of the exit-node

body set is the requirement placed upon it when it is used in the jB,„[n] equation

for the return node, so this requirement is satisfied. The other requirement of this

return-node equation is that the exit-node entry set contains all calling-context effects
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for the procedure that reach the exit node. This requirement has already been shown

to be satisfied, so we conclude that the body-set equations are correct.

2.2.2 Element Recoding for Aliases

The RECODE set for the entry node has its elements added to the £,„ set for

that node. The idea of the RECODE set is that certain elements in the OUT set of a

predecessor call node, irrespective of their ability to cross the interprocedural bound-

ary when parameters are ignored, should nevertheless be carried over into the entry

set of the called procedure as calling-context effects because of an alias relationship

established by the call, between an actual parameter and a formal call-by-reference

parameter. Any element that enters a procedure because of such an alias relationship

between parameters should be recoded to reflect this alias relationship.

A recoded element represents both the base element, which is the element as

it would be if there were no alias relationship, and the non-empty alias relationship.

Element recoding has two purposes. First, it allows the recoded element within

the called procedure to be killed correctly through its alias relationship. Second, it

allows the recoded element within the called procedure to be correctly associated

with specific references to those aliases that are in the alias relationship.

Element recoding never involves a change of the base element, but only a change

of the associated alias relationship, which would be the set of formal parameters to

which the base element is, in effect, aliased. Because of element recoding, in effect a

new element is generated, hence the separate RECODE set.

Figure 2.2 presents an algorithm for generating the entry-node input sets £",„

and RECODE, for a forward-flow-or dataflow problem, for the assumed language

model in which the visibility of each formal parameter is limited to the single proce-

dure that declares it. For each element in the OUT[c] set, the algorithm generates

at most one element for inclusion in the entry-node input sets. The algorithm is
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unambiguous, except for line 10. The "can be affected by" test at line 10 is a gener-

alization. The details of this test will depend on the specific dataflow problem being

solved. For example, if the dataflow problem is reaching definitions, then each base

element w represents a specific definition of some variable z. If the actual parame-

ter p being tested by the algorithm is the variable z, and the corresponding formal

parameter is call-by-reference, then the definition that w represents can be used or

killed through that formal parameter, so w can be affected by that actual parameter

z, and the "affected by" test is therefore satisfied. The p 6 OA test at line 10 covers

the situation where an actual parameter p that is aliased to the formal / is itself a

formal parameter that is effectively aliased to w. In this case / is established as a

new effective alias for w, by transitivity of the alias relationship.

Referring to the algorithm, there is no carry over of the old alias relationship

into the new alias relationship. The old alias relationship is represented by the OA

set, and the new alias relationship is represented by the NA set. That this no-

carry-over of the old alias relationship is correct, follows from the assumed language

model. The aliases of element recoding are formal parameters, and the model states

that each formal parameter is visible in only one procedure. This means there is no

need to carry the old alias relationship into a different procedure, because the aliases

cannot be referenced outside the single procedure in which the old alias relationship

is active. Note that recursive calls are no exception to this no-carry-over rule, because

a recursive call will cancel any alias relationship established for a base element by

any prior call of the procedure.

In general, the fact that crossing elements are recoded when NA 7^ 0, and

unrecoded when NA = and OA ^ 0, places an added burden on the return-node

equations to recognize an element that should be recovered from the exit-node entry

set, necessitating, in effect, additional rules to cover this possibility. After an element

is recovered, it would also be necessary to restore the alias relationship, if any, that
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— e is an entry node.

— This algorithm constructs the £,„[e] and RECODE[e] sets,

begin

1 £^.n[e]^0

2 RECODE[e]^il>
3 for each predecessor call node c of entry node e

4 for each element a; 6 OUT[c]
5 let w be the base element of x

6 let OA be the set of aliases, if any, associated with w, forming x

7 let NA be the set of new aliases

8 NA*-<1\

9 for each actual parameter p at call node c that is aliased

to a call-by-reference formal parameter /
10 if {w can be affected by p) V (p G OA)
11 NA^ NAU{f}

fi

end for

12 ifNA^m
13 RECODE[e]*-RECODE[e] Li {{w,NA)}
14 else if w can cross the interprocedural boundary

15 Ei4e]^Ei4e]U{w}
fi

end for

end for

end

Figure 2.2. Element-recoding algorithm for forward-flow-or dataflow problems.
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it had prior to the call. This recognition and restoration problem is perhaps most

easily solved by associating with each call node two additional sets, one for body-

set elements and another for entry-set elements, where each set consists of ordered

pairs. These sets would be determined whenever the entry-node entry set of the

called procedure is computed.

The first element of each ordered pair is a crossing element x as it exists in the

Bout or Eout set at the call node, and the second element is element y which is that

element effectively generated from element x by the element-recoding algorithm of

Figure 2.2 at either line 13 or line 15. If all crossing elements for the call are included

in these additional sets, then the return-node equations can use these sets instead

of the 5out[p] and £<,„«[?] sets to recognize elements to be recovered from the exit-

node entry set. Recognition and restoration would be done by trying to match the

exit-node entry-set element against the second element of an ordered pair from the

appropriate additional set at the call node, and then, if there is a match, restoring

the original element by using the first element of the matched pair. For example, if

X is a crossing element in the Bout set of a call node, and y is the generated element,

then (x, y) would be an ordered pair in the additional set for body-set elements.

When the 5,„ set for the return node is computed, if y is in the exit-node entry set

then it will match the ordered pair (x, y), and element x will be added to the 5,„

set.

As an example of why element receding is necessary, consider the following.

Suppose there are two different calls to the same procedure, and different definitions

of global variable g reach each call. At one of the calls, g is also used as an actual

parameter and the corresponding formal parameter is call-by-reference. The problem

now is what to kill from the entry set whenever that formal parameter is defined in

the called procedure. If the individual elements representing the different definitions

of g do not somehow identify how they are related to this formal parameter, then
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the only choice is to kill all of them or none of them, and neither of these choices is

correct in this case, as the only definitions of g that should be killed are those that

entered the procedure from the call where g is aliased to the call-by-reference formal

parameter.

2.2.3 Implicit Definitions Due to Calls

A call with parameters typically has implicit definitions associated with it.

For example, if a formal parameter is call-by-reference, then each actual parameter

aliased to that formal parameter is implicitly defined at each definition of the formal

parameter. If a formal parameter is call-by- value- result, then that formal parameter is

implicitly defined each time the called procedure is entered, and the actual parameter

at the call is implicitly defined upon return from the call. From the standpoint

of solving a dataflow problem such as reaching definitions, all implicit definitions

due to calls should be determined, and elements generated at the appropriate nodes

to represent these implicit definitions. The remainder of this section discusses the

generation of implicit definitions and the determination of what reaches them for the

specific problem of reaching definitions.

We assume that a formal parameter may be either call-by-reference, call-by-

value, call-by-value-result, or call- by-result. For the reaching-definitions problem,

before the iterative algorithm can be used to solve the dataflow equations, all GEN

sets must be prepared.

For each point p in the program where a call-by-reference formal parameter is

defined, add to the GEN set of the node for point p an implicit definition of each

actual-parameter variable that is aliased to that formal parameter in a call. Each

added implicit-definition element must be a recoded element that includes the alias

relationship for that actual parameter. For example, suppose a procedure named A

has two call-by-reference formal parameters, a; and y, and inside A at point p there is

a definition of x, and there are three calls of procedure A in the program. The first call
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aliases variable u to x. The second call aliases variable v to both x and y. The third

call aliases variable w to x. Thus, at point p there would be three implicit-definition

elements generated, namely (u, {x}), {v,{x,y}), and (w,{x}). As an example of

what this element notation means, for the {v,{x}) element the v represents the

implicit definition of variable v that occurs at point p, and the x represents the

formal parameter that variable v is aliased to. As a special requirement for these

implicit-definition elements, for the Bout set at the exit node of procedure A, the

(u, {x}) element, if it reaches this set, can only cross from this set to the return node

of the first call. Similarly, the (u, {x,y}) element can only cross to the return node

of the second call, and the [w, {x}) element can only cross to the return node of the

third call.

The crossing restrictions in the preceding example are due to a rule, now given.

Let A denote a procedure containing a definition at point p of a call-by-reference

formal parameter x, {t, {x}) is the implicit-definition element generated at point p

for some specific call c of A that aliases actual-parameter variable t to x, and m is

the exit node of A. If {t, {x}) G 5out["i], then {t, {x}) can only cross from Bout[m] to

the return node of call c, and as {t, {x}) crosses, it must be recoded as ^ by having its

alias relationship nullified. This crossing-restriction rule is necessary because element

(t, {x}) is both a body effect, because it is generated inside the called procedure, and

a calling-context effect, because it is the result of a specific call of that procedure.

This dual quality requires the special treatment that the rule provides. Nullifying

the alias relationship as the element crosses to the return node is both good practice

in general for this element, and a necessity if call c is a recursive call of A. As an

example, assume that call c is a recursive call of A, and that variable < is a global

variable. If [t, {x}) reaches the 5out["i] set, the rule states that this element can only

cross to the return node of call c, and that it be recoded as t. Assuming that this

t element then reaches from this return node to the 5out[m] set, t can then cross
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to any return node that has an in-edge from m. Although both the {t,{x}) and t

elements refer to the same implicit definition of variable t occurring at point p, the

two elements are not the same, and the crossing-restriction rule applies only to an

element that is identical to the element generated at point p, which is [t, {x}).

The implicit definitions of actual-parameter variables is the most important

category of implicit definitions that are due to call-by-reference formal parameters.

However, there is also a second, less-important category. At each explicit definition

of a variable t at point p inside A, such that variable t is also used in a call of A as an

actual parameter aliased to a call-by-reference formal parameter x, then there is an

implicit definition of formal parameter x at point p. The implicit-definition element

generated at point p would be {x,{t}), meaning a definition of variable x at point

p, aliased to variable t. However, assuming a formal parameter cannot be defined or

used outside the procedure for which it is declared, it follows that there is no need

for a crossing-restriction rule for these elements, because they cannot cross to any

return node.

Normally, a definition of a variable kills all other definitions of that variable.

However, the implicit definitions due to call-by-reference formal parameters have no

associated kills. Instead, the following rule suffices. For each call-by-reference formal

parameter x declared for procedure A, if all calls of A alias the same actual-parameter

variable t to x, then each explicit definition inside A of either variable t or x, will kill

all definitions of variable t and all definitions of variable x. Otherwise, if all calls of A

do not alias the same actual-parameter variable t to x, then each explicit definition

inside A of either variable t or x will kill only the definitions of that variable and

those recoded elements that are aliased to that variable.

The entry-node GEN set will be used to hold all implicit definitions of formal

parameters that occur upon procedure entry. Thus, for each entry node, for each
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formal parameter of the represented procedure that is call-by-value or call-by-value-

result, add to the GEN set of that entry node an element that represents an implicit

definition of that formal parameter occurring at that entry node.

The return-node GEN set will be used to hold all implicit definitions of actual

parameters that may occur upon return from the called procedure. Thus, for each

return node, for each actual parameter of the associated call whose corresponding

formal parameter is call-by-result or call-by-value-result, add to the GEN set of

that return node an element that represents an implicit definition of that actual

parameter occurring at that return node. The return-node KILL set should represent

all elements that will be killed by these implicit definitions of actual parameters.

With the GEN sets ready, the iterative algorithm can proceed. Once the iter-

ative algorithm is ended, a follow-on step is done: a) Examine the Bout set for each

exit node. For each definition d in this set of a formal parameter p, and p is call-by-

result or call-by-value-result, then d reaches the implicit use of this formal parameter

by those implicit definitions of actual parameters found at the various return nodes

whose corresponding formal parameter is p. The element representing d can be added

to the Bin sets of those return nodes in a way that reflects the reach, b) Examine

the OUT set of each call node. For each definition d in this set of a variable that

is used as an actual parameter in the call, and the corresponding formal parameter

is call-by-value or call-by-value-result, then d reaches the implicit use of the defined

variable by the implicit definition of the corresponding formal parameter found at

the entry node of the called procedure. The element representing d can be added to

the Ein set of that entry node in a way that reflects the reach.

2.3 Interprocedural Forward-Flow-And Analvsis

This section gives the dataflow equations used by our interprocedural analysis

method for forward-flow-and problems. The difference between these equations and

the equations for forward-flow-or is explained.
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For forward-flow-and problems, some changes are needed to the dataflow equa-

tions given in Section 2.2.1. Of course, the confluence operator must be changed from

union to intersection. However, it is still necessary to construct the entry-node entry

set as the union of all crossing effects from the predecessor-node sets, so that calling

context can be properly recovered at the return nodes. At the same time, the entry

set must always be constructed as the intersection of predecessor-node sets, if the

entry set is to be a part of the IN and OUT sets. These conflicting requirements for

the entry-node entry set can be resolved by maintaining two separate entry sets at

eeich node. The revised dataflow equations follow. The two conditions, Ci and C2,

are explained in Section 2.2.1.

For any node n.

IN[n] = El^[n]uBi4n]

OUT[n] = Eil\[n] U 5<,„,[n]

Group I: n is an entry node.

Bin[n] =

Bout[n

Ei%

Eillin

U {x\xe{Eil\[p]UBUp])AC,}
p e pred{n)

n {x\xeOUT[p]ACi}
p € pred{n)

= GEN[n]

= 4^^H U RECODE^^^n] U RECODE^^^n]

= E\^^[n\{J RECODE^^^n]

Group II: n is a return node, p is the associated call node and q is the exit node of

the called procedure.

Bin[n\ = {x\{xe Bou,[p] A (Ci" V (Ci A C2 A X G E^^^,[q]))) V (x € BUq] A C^)]
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eSM = {x € ^li[p] I

C: V (Cx A C2 A X e 4ll[g])};i = 1,2.

Boutin] = {BM - KILL[n]) U GEN[n]

E^^M = Ei;i[n] - KILL[n]-i = 1,2.

Group III: n is not an entry or return node.

Bin[n] = n Boutlp]

p G pred{n)

ES\n\= n E^Up],^ = h2.

p £ pred{n)

Boutin] = (5.„[n] - KILL{n]) U GENin]

4iN = ESin] - KILLin]-i = 1,2.

The entry set E^^^ is the set used to recover calling context, and the entry set

£(2) is the set that is a component of the 7iV and OUT sets. The RECODE sets

appearing in the entry-node equations represent receded elements as explained in

Section 2.2.2. The RECODE^^^ set will just be the union of the receded elements

generated from each predecessor call node c, using the algorithm of Figure 2.2 and

drawing from the E'^Jjc] and Boutic] sets at line 4 instead of the OUTic] set.

Similarly, the RECODE^^^ set could just be the intersection of the recoded

elements from each predecessor call node c, drawing from the OUTic] set at line 4.

However, doing this may cause the unnecessary loss of recoded elements when the

same underlying base element w is found in each OUT[c] set. To avoid such loss, an

improved rule states that if the same base element w is found in each OUTic] set,

and there is one or more non-empty alias relationships for that w occurring at one or

more predecessor nodes c, then a single recoded element for that w that encodes all

of these alias relationships would be generated into the RECODE^^^ set, otherwise

no recoded element for that w would be generated into the RECODE^^^ set. For
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example, suppose c has three different values for a given entry node, and the same

base element w is found in each OUT[c] set, and at one c there is an empty alias

relationship, at the second c there is an alias relationship to formal parameter x, and

at the third c there is an alias relationship to formal parameter y. For this example,

the single receded element would be {w, {x,y}), and this recoded element can either

be killed directly through w, or indirectly through x, or through y. Note that the

complete kill of this recoded element at any kill point, even though the kill may have

been made through an alias that was not established at each c, is nevertheless correct.

The intersection confluence operator associated with RECODE^^^ implicitly requires

that for base element w to pass a kill point, it must be on every call path past that

kill point, which is not the case when w is killed from at least one call path, which

happens when that w is killed through an alias that was established by at least one

of the c. If the specific dataflow problem being solved allows the base element to be

used through one of its effective aliases, then a flag could be associated with each alias

in the recoded elements of RECODE^'^\ and this flag could indicate whether or not

the alias was established at each c. In the case of the example, the recoded element

with flags would be (u;, {a;not'2/not})- O^^ly ^ "^^e of the base element through an

alias established at each c would be a use through an alias that occurs on every call

path, and this kind of use would be the all-paths use that is implicitly required by

the specific dataflow problem by virtue of it being forward-flow-and.

With the exception of the confluence operator and the two different entry sets,

the equations for forward-flow-and are the same as for forward-flow-or, and are like-

wise correct. Set ^(^^ fulfills the requirement for the IN and OUT sets by consistently

using the intersection confluence operator for its construction, just as B does. The

equations for the £^(^^ and ^^^^ sets only differ at the entry node, and there the only

difference is the confluence operator, and the way the RECODE sets are built. As

set intersection is the confluence operator for E^'^\ and set union for £J<^), and the
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Table 2.2. Solution of forward-flow-and equations for Figure 2.3.

Node El'J E^ B.„ Bout

1

2 {1,2}
3 {1,2} {1,2,4}
4 {1,4,5} {1,4,5}
5 {1,2} {1,2,3}
6 {1,3,5} {1,3,5}
7 {1,5} {1,5}
8 {2, 3, 4} {2, 3, 4} {2} {2}

9 {2, 3, 4} {3,4} {2} {5}

10 {3,4} {3,4} {5} {5}

RECODE^^^ set is added to both £(^) and E^^)^ jt follows that E^^^ will be a subset

of E^^^ at every node. Thus, E^^^ can be used to recover calling context for E^'^\

Set E^^^ also serves to recover calling context for both E^^^ and B, because E^^"* is

built at the entry node from these two sets, and the use of union as the confluence

operator guarantees that all calling-context effects will be collected.

Table 2.2 shows the result of solving the equations for the flowgraph of Fig-

ure 2.3. By "solving" we mean that, in effect, the iterative algorithm has been used

and all the sets are stable. The dataflow problem is available expressions, and vari-

able w is local while variables x, y, and z are global. Available expressions is the

problem of determining whether the use of an expression is always reached by some

prior use of that expression, for certain expressions in the program. In Figure 2.3,

nodes 1 and 8 are entry nodes, nodes 7 and 10 are exit nodes, nodes 3 and 5 are call

nodes, and nodes 4 and 6 are return nodes. Alongside each node is its basic block.

Each expression is superscripted with an identifier that is the set element used in

Table 2.2 to represent that expression.
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procedure main

begin

y = w + 1

z = x+ 1

if(e)

else

a = z+ 1

caU f

end

a = y + 1

caU f

a = z+ 1

call f()

procedure f()

begin

x = z + 2
end

y = W + 1^

Z = X+1^

a = y + 1

call f()

Figure 2.3. An available-expressions example.
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2.4 Interprocedural Backward-Flow Analysis

Backward-flow problems are basically forward-flow problems in reverse. How-

ever, the same flowgraph is used for both forward-flow and backward-flow problems.

To convert the equations for forward-flow-or to backward-flow-or, or for forward-

flow-and to backward-flow-and, the transformation is mechanical and straightfor-

ward. The same equations are used, but various words and phrases are everywhere

changed to reflect the reverse flow. For example, "pre<f(n)" for predecessors becomes

'^succ{ny for successors, "out" subscripts become "in" subscripts and "in" subscripts

become "out" subscripts, IN becomes OUT and OUT becomes IN, "call node" be-

comes "return node" and "return node" becomes "call node", "entry node" becomes

"exit node" and "exit node" becomes "entry node". For backward flow, the nodes

requiring special equations are the exit node and call node, and not the entry node

and return node as for the forward-flow problems.

2.5 Complexity of Our Interprocedural Analysis Method

To determine the worst-case complexity of our method for the assumed lan-

guage model in which the visibility of each formal parameter is limited to the single

procedure that declares it, we consider the solution of the dataflow equations for only

one element at a time. Let n be the number of flowgraph nodes. Let the elementary

operation measured by the complexity be the computation of the dataflow equations

once at a single, average flowgraph node, for a single element. Only the presence or

absence of the single element within a particular body or entry set need be repre-

sented, and this requires no more than a single bit of storage for each set referenced

by the equations. Thus, computing the dataflow equations once at an average node,

for a single element, will consist of a small number of integer operations, assuming

that the average in and out-degree of the flowgraph nodes is bounded by a small

constant, which will always be the case for flowgraphs generated from real programs,
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and also assuming that the length of recoded elements will be small. Referring to

the algorithm of Figure 2.2, the length of a recoded element is 1 + \NA\, and \NA\

is bounded from above by the number of call-by-reference formal parameters of the

given procedure. As a rule, this upper bound will be small.

We next consider the total number of node visits required to solve the dataflow

equations for a single element. Prior to solving the equations, all body and entry sets

are initialized to empty, at complexity 0{n). The empty sets represent the absence of

the element. Note that each set has only two states: either the element is present, or

it is absent. Assuming a forward-flow problem, each time the equations are computed

for a node, if any of the out sets have changed from their previous state, then the

equations will be computed for all successor nodes. The forward-flow-or equations

have only two out sets per node, and the forward- flow-and equations have three. It

follows that repeated computation of the equations for a single node will cause the

successor nodes to be marked for computation at most two or three times, depending

on the equations being used. Given that the average number of successor nodes is

bounded by a small constant, it follows that the total number of node visits required

to solve the dataflow equations for a single element will be bounded from above by

kiTi where ki is a constant, giving a worst-case complexity of 0{n) for solving the

dataflow equations for a single element.

The worst-case complexity of solving the dataflow equations for m total ele-

ments will therefore be 0{mn). Let b be the number of base elements for the program

being analyzed, and let r be the number of recoded elements, giving m = b + r. As

an example, for the reaching-definitions dataflow problem the base elements will be

all the definitions in the program. We assume that for the kind of dataflow problems

our method is meant to solve, the number of base elements will be a linear function

of the program size, and therefore proportional to n. Let constant k2 be an upper

bound of b/n. We also assume the universe of real, useful programs, written by
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programmers to solve practical problems. To determine an upper bound for r, let k

be the maximum number of formal parameters for a single procedure. That A: is a

constant independent of program size should be obvious.

Given k and the algorithm of Figure 2.2, and allowing all possible combinations

of the formal parameters of any single procedure, the maximum number of receded

elements for any single procedure and base element is ^3 = J2i=i I
•

)
= 2^^ — 1.

Note that k^ is a constant, albeit an enormous constant. The maximum number

of recoded elements for any single procedure will therefore be ksb. In the assumed

language model, each formal parameter is visible in only one procedure, and this

means each recoded element is confined to a single procedure when the dataflow

equations are solved. Therefore, the total number of node visits required to solve

the dataflow equations for all the recoded elements will be bounded from above by

ULi kiSiksb where j is the number of procedures in the flowgraph, and 5, is the

number of flowgraph nodes in the ith procedure. This upper bound can be rewritten

as Yli=i kik2k3nsi. Ignoring constants and given that Yli=i ^i = " ^^^ Yli=i '^•Si = "^t

the worst-case complexity of our method for the assumed language model is 0{n^),

and the elementary operation measured by the complexity is a small number of integer

operations assuming that the average recoded-element length is small.

For a program from the assumed universe of programs, the likelihood of a large

complexity constant due to element recoding is very low, for the following reason.

In order to increase the number of recoded elements for a given base element and

procedure, the given base element must, in effect, be repeatedly aliased to difi"erent

combinations of formal parameters in the given procedure. The algorithm of Fig-

ure 2.2 generates at most a single recoded element for each element in the OUT set,

so to increase the number of recoded elements as stated, there must be multiple calls

to the same procedure, and in these different calls the same base element must be

aHased to different formal-parameter combinations. To assess the likelihood of this
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requirement being met, consider that for any given program from the assumed uni-

verse, the type and purpose of a variable determines how that variable is used in that

program, and each variable used in a program by necessity has a purpose. Given a

number of different calls to the same procedure, and given that a variable appears as

one or more of the actual parameters in each of the calls, then as a rule we expect

that variable to always occupy the same parameter positions in those calls because

there is always a close correspondence between parameter position and the purpose of

the variable that occupies that position. Note that by "variable" we mean a variable

and any aliases it may have, including formal-parameter aliases. A variable and its

aliases are interchangeable and share the same purpose because by definition they

reference the same data.

It might be argued that a language such as C has procedures that have a

variable number of arguments, such as printf and scanf, for which the same variable

could easily occupy different actual-parameter positions in different calls. This is

true, but such library procedures are best treated as unknown calls, and there is

no element recoding for unknown calls. For the needs of element receding in the

rare case of a user-written procedure with a variable number of arguments, a single

formal parameter could stand for the variable portion of the formal parameters, and

conservative assumptions could be made whenever that single formal is, in effect,

referenced. Aside from mentioning this, we do not consider such user-written variable-

argument procedures further.

For a dataflow problem such as reaching definitions, the base element can only

be affected by a single variable. For such a dataflow problem, the purposefulness of

variables makes it very unlikely that an increase in the number of receded elements

for a given procedure and base element can even begin, let alone be sustained. How-

ever, such an increase would be more likely for a dataflow problem where the base
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element can be affected by several different variables. An example would be avail-

able expressions, because each base element could be affected by as many different

variables as compose the expression represented by that base element.

In light of the preceding argument regarding the purposefulness of variables,

for the reaching-definitions and similar dataflow problems, we expect the maximum

number of recoded elements for any given procedure and base element in the majority

of the programs in the assumed universe, to be one, and a little higher than one for

the remaining programs in that universe. Given the algorithm of Figure 2.2, we also

expect the average length of each recoded element to be slightly more than two, given

the preceding expectation that there will be a very small maximum number of recoded

elements for any given procedure and base element, and assuming that most base

elements when aliased by a call will be aliased to only a single formal parameter, and

only occasionally aliased to more than one. Note that this expected average length

of the recoded elements is consistent with the claim that the elementary operation

measured by the worst-case complexity of our method is a small number of integer

operations.

It may be noticed that the complexity of 0{n^) for our interprocedural analysis

method is the same as the known worst-case complexity for intraprocedural dataflow

analysis, assuming there are no restrictions on the flowgraph. This fact makes it

unlikely that it would be possible to improve on our method in terms of complexity,

without resorting to flowgraph restrictions. However, although the complexities are

the same, this does not mean interprocedural dataflow analysis will now take roughly

the same time as intraprocedural dataflow analysis. The following inequality should

make this clear, ^i-i sf < n^, given that ; is the number of procedures in the

flowgraph, 6, is the number of flowgraph nodes in the iih procedure, and X]i=i -Si = n.

Besides the language model that is assumed for this chapter, an alternative

model allows each formal parameter to have visibility in more than a single procedure.
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Examples of programming languages that fit this alternative model are Pascal and

Ada, which allow nested procedures. Element receding can be used for this alternative

model, but unless precision is compromised, the worst-case complexity for solving the

equations will be exponential, because the number of recoded elements could grow

exponentially assuming that alias information is compounded when a recoded element

is recoded. The exponential complexity of tracking aliases due to calls was first

considered by Myers [17], and more recently by Landi and Ryder [15]. In practice, the

cost of precise element recoding for the alternative language model may be acceptable

for the assumed universe of programs, and for the same reason given previously

regarding the purposefulness of variables. However, we do not consider the alternative

model further.

2.6 Experimental Results

There are experimental data for our interprocedural analysis method. Specif-

ically, two different prototypes have been constructed, and they both solve the

reaching-definitions dataflow problem using our method. Both prototypes accept

C-language programs cis the input to be dataflow analyzed. For simplicity, these pro-

totypes impose some restrictions on the input, such as requiring that all variables be

represented by single identifiers, thereby excluding variables that have more than one

component, such as structure and union variables. In addition, there is no logic in

the prototypes to determine what pointers are pointing at, so pointer dereferencing

is essentially ignored. The prototypes do not accept pre-processor commands, so the

input programs must be post-preprocessor.

Both prototypes, named prototype 1 and prototype 2, use the same code to

parse the input program and construct the flowgraph. However, they differ in how

they implement our analysis method. Prototype 1 prepares a single bit- vector format

containing all the definitions in the input program, and then solves the dataflow

equations once for the program flowgraph. Prototype 2 uses a single integer as the
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bit vector and solves the dataflow equations for the program flowgraph as many

times as there are base elements. For the reaching-definitions dataflow problem, the

definitions in the program are the base elements. We call the approach used by

prototype 2 one-base-element-at-a-time, and the approach used by prototype 1 is

all-at-once.

It might be expected that prototype 2 would be many times slower than proto-

type 1, because of the big difference in bit-vector sizes, but this is not the case. For

prototype 1, calculations using varied test results show that V x Si ^ D, where V

is the average number of visits per flowgraph node made to solve the dataflow equa-

tions, ^i is the integer size of the bit vector for prototype 1, and D is the number

of definitions in the input program. This relationship for prototype 1 means that

prototype 2 should run at roughly the same speed as prototype 1, because solving

the dataflow equations for a single element will require an average of roughly one

visit per flowgraph node and the application of the dataflow equations to a vector

of size one. Note that the total amount of work prototype 1 must do per flowgraph

node to solve the equations is proportional to the product V x Si ~ D, and the total

amount of work prototype 2 must do per flowgraph node to solve the equations for

the D base elements is proportional to the product VxS2'xDk1xIxD^D,

where ^2 is the integer size of the bit vector for prototype 2.

Experimental results have supported the expectation of similar speeds for the

two prototypes. When deciding on the design of a practical tool, this finding is

important and decisively tips the scales in favor of the one-base-element-at-a-time

approach used by prototype 2. For both prototypes, the bit space needed for set

storage is nks, where n is the number of flowgraph nodes, k is the average number of

sets per node, and s = max(average set bit-size for any solving of the equations). Note

that for prototype 1 there is only one solving of the equations, and for prototype 2

there are as many solving of the equations as base elements. The primary reason
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Table 2.3. Typical experimental results for the two prototypes.

defs defs global calls nodes prototype 1 prototype 2

2126 30% 521 4191 49s lm21s
2026 60% 472 3948 55s 2m22s
4109 30% 924 7537 4ml8s 4m38s
4223 60% 916 7723 4m57s 8ml9s
6115 30% 1325 11185 N/A lOmOs

6091 60% 1411 11288 N/A 18ml8s
8200 30% 1832 14799 N/A 17m44s
8054 60% 1726 14641 N/A 30m2s
10299 30% 2164 18434 N/A 23m55s
10016 60% 2356 18587 N/A 45m8s

the approach used by prototype 2 is preferable when compared with the all-at-once

approach used by prototype 1, is the likelihood of a greatly reduced s value. For

example, without element recoding, the s value is 1 for prototype 2, and D for

prototype 1. Allowing element recoding, the s value for the prototype-2 approach

will be 1 + max(average number of recoded elements per procedure for any solving

of the equations). Here we assume that the best way to add element recoding to

prototype 2 would be, for each solving of the equations, to solve the equations for

both a single base element and all recoded elements generated from that base element.

Table 2.3 presents typical experimental results for the two prototypes. Each

table row represents a different input program. The input programs were randomly

generated by a separate program generator. The generated input programs are syn-

tactically correct and compile without error, but have meaningless executions. Each

input program in Table 2.3 has 100 procedures. Only prototype 1 currently has

element-recoding logic, so the input programs do not have call parameters and the

table data do not reflect element-recoding costs. Measuring element-recoding costs

for randomly generated programs would be somewhat meaningless anyway, since the

purposefulness-of-variables principle would be violated.
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Referring to the columns of Table 2.3, "defs" is the total number of definitions in

the input program, "defs global" is the percentage that define global variables, "calls"

is the number of known calls, "nodes" is the number of flowgraph nodes, "prototype 1"

is the total CPU usage time in minutes and seconds required by prototype 1 to

completely solve the reaching-definitions dataflow problem for the input program

and generate a report of all the reaches, and "prototype 2" is the same thing for

prototype 2. The hardware used was rated at roughly 23 MIPS. The large space

requirements of prototype 1 prevented running it for the larger input programs in

the table.
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INTERPROCEDURAL SLICING AND LOGICAL RIPPLE EFFECT

3.1 Representing Continuation Paths for Interprocedural Logical Ripple Effect

This section lays the theoretical basis for our algorithm. The problem of inter-

procedural logical ripple effect is examined from the perspective of execution paths

and their possible continuations. First, general definitions are given, followed by three

assumptions and a definition of the Allow and Transform sets, followed by Lemma 1,

Theorems 1 through 4, and a discussion of the potential for overestimation inherent

in the Allow set.

A variable is defined at each point in a program where it is assigned a value. A

definition is assumed to have the general form of "u <— expression", where v is the

variable being defined and "<— " is an assignment operator that assigns the value of

expression to v. If the expression includes variables, then these variables are termed

the use variables of the definition. In general, a use is any instance of a variable that

is having its value used at the point where the variable occurs.

A procedure contains a definition if the statement that makes the definition is

in the body of the procedure. Similarly, a procedure contains a call if the statement

that makes the call is in the body of the procedure. The body of a procedure is those

statements that are defined as belonging to the procedure.

Frequent reference is made in this chapter to a procedure containing a state-

ment, or containing a call, or containing a flowgraph node. For languages that allow

nested procedures, such as Pascal and Ada, note that procedure nesting in these

languages is a mechanism for controlling variable scope, and not a mechanism for

45
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sharing statements, calls, or flowgraph nodes. Throughout this chapter we assume

that at most only a single procedure contains any given statement, call, or flowgraph

node.

Let d and dd be two definitions, possibly the same, in the same program. Let dd

have a use-variable u, let Vdd be that use-variable instance, and let d define v. Given a

possible execution path between definition d and v^d, along which the definition of v

that d represents would be propagated, such a path is referred to as a definition-clear

path between d and Vdd with respect to v. Definition d can only be propagated along

an execution path to the end of that path if either definition d itself or an element

that represents definition d exists at the beginning of that path, and there is no

redefinition of v along that path. Definition d is said to affect definition dd if there

is a definition-clear path between d and Vdd with respect to v. Similarly, definition d

affects use u if u is an instance of u, and there is a definition-clear path between d

and u with respect to v. For convenience, v will not be explicitly mentioned when

it is understood. Note that whenever we speak of an execution path between two

points, we always mean that the execution path begins at the first point and ends at

the second point. For example, an execution path between d and dd begins at the

program point where d occurs and ends at the program point where Vdd occurs. For

convenience, we assume that dd and Vdd occupy the same program point.

Assumption 1. A called procedure, if it returns, always returns to its most recent

caller. A procedure that returns, always returns to the most recent unreturned call.

Assumption 2. A call has no influence on the execution paths taken inside the

called procedure.

Assumption 3. There are no recursive calls.

Assumption 1 reflects the behavior of all the procedural languages that we know

of. Regarding Assumption 2, our algorithm may in fact overestimate the logical ripple

effect because of both Assumption 2 and the unstated but standard assumption of
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intraprocedural dataflow analysis that all paths in a procedure flowgraph are possible

execution paths. However, these two assumptions are unavoidable because determin-

ing all the truly possible execution paths in an arbitrary program is known to be an

undecidable problem. Regarding Assumption 3, making this assumption improves

the precision of our algorithm because this assumption removes a potential cause of

overestimation. The consequence of using our algorithm for a program with recursive

calls is discussed at the end of Section 3.2.

To determine what a definition affects when it is constrained by ripple effect,

it is useful to introduce two concepts: backward flow and forward flow. Given an

execution path, whenever the execution path returns from a procedure to a call, this

is termed backward flow. All other parts of the execution path may be termed forward

flow. Note that the possibilities for backward flow are constrained by Assumption 1,

and therefore constrained by the relevant execution paths that lead up to the point

of the return in question.

Regarding a given execution path, those call instances within that execution

path that have yet to be returned to within that path, called unreturned calls, are

the parts of the path that constrain backward flow. Note that this constraint is a

positive constraint, since a call cannot be returned to unless that call exists as an

unreturned call in at least one relevant execution path.

Definition 1. Two sets. Allow and Transform, will be used to represent the

backward-flow restrictions associated with a particular definition d. Let p be the pro-

gram point where definition d occurs. The elements in both sets are calls. The Allow

set identifies only the calls to which the execution path continuing on from point p

may make an unmatched return to—until the backward-flow restrictions represented

by this Allow set are effectively cancelled by the interaction between the execution-

path continuation and the Transform set, explained shortly. An unmatched return is

a return made during the execution-path continuation to a call instance that precedes
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the beginning of that execution-path continuation. The call instance is necessarily an

unreturned call, as otherwise it could not be returned to. |Allow| < the total number

of different calls represented in the program text. We define Allow = to mean there

are no backward-flow restrictions for d. The Transform set identifies only the calls

to which the execution path continuing on from point p may make an unmatched

return to, and upon this unmatched return, the execution-path continuation is no

longer constrained by the Allow and Transform sets associated with d. The following

relationships hold. Transform C Allow. If Allow / then Transform ^ 0.

Note that minimizing backward-flow restrictions must be done whenever the

possible execution paths allow it, because otherwise the computed logical ripple

effect—which is the whole purpose of this formal-analysis section—may be missing

pieces that belong in it but were not added to it because backward-flow restrictions

were retained that are not valid for all the possible execution paths involved.

Lemma 1. For any execution path P between two program points p and q, if P

includes two or more call instances made in P that have not been returned to in P,

then for these unreturned calls, c, calls the procedure containing c,+i, where c, is the

ith unreturned call, in execution order, made in P.

Proof. Assume that the next unreturned call c,+i is not contained in the pro-

cedure that was called by c^. Let X be the procedure called by c,, and let Y be the

procedure that contains c,+i. The execution path in P between making the call c,-

and making the call c^+i must include a path out of procedure X and into procedure

Y so that the call Ci+i can be made. A path out of procedure X can occur in only

two ways. Either X returns to a call, or X itself makes a call. If X returns to a call,

then by Assumption 1, c, would be returned to, contradicting the given that c, has

not been returned to. This means X must make a call to get to Y. Let c be the call

contained in X that is the last call contained in X on the execution path in P taken

from X to F so as to make the call c,+i. If X makes the call c, and c has not been
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returned to in P, then c would precede c,+i as an unreturned call following c,, con-

tradicting the given that c,+i is the next unreturned call in execution order after c,.

If c has been returned to in P, then all calls occurring on the execution path between

the call c and the return to c must have been returned to according to Assumption 1.

This would mean c,+i has been returned to, contradicting the given that Ci^i has

not been returned to. Thus, it is true that c, calls the procedure containing c,+i, as

assuming otherwise leads to contradictions.

Definitions for Theorems 1 through 4- Let d and dd be the two definitions

previously defined. Let A and T be the Allow and Transform sets associated with d.

Let P be a single execution path between d and dd, and along which d can affect dd,

subject to the constraints on P imposed by A and T. P will consist of a sequence of

calls and returns, if any, in the order they are made. Any instance of a call made in

P that is not returned to in P, is an unreturned call in P.

K is defined for P if and only if P contains an unmatched return—meaning a

return to a call instance that precedes the beginning of P—to a call G T. K is that

part of P that follows the first unmatched return to a call G T. Thus, K represents

the continuation of P after the unmatched return. Any instance of a call made in K

that is not returned to in K, is an unreturned call in K

.

Referring to each of the four theorems in turn, let AA and TT be the Allow

and Transform sets for dd given all the paths P that meet the requirements of P as

stated by that theorem. Let AAp and TTp be the Allow and Transform sets for dd

given a single path P that meets the requirements of P as stated by that theorem.

The four theorems that follow each define AA and TT. Note that for any given P,

A, and T, one of the four theorems will apply.

Theorem 1. If (1) y4 = 0, and P has no unreturned calls, or (2) /I / 0, /C is

defined for P, and K has no unreturned calls, then AA i— and TT <- 0.
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Proof. For case (1), d is free of backward-flow restrictions and d has affected

dd without making an unreturned call, therefore dd will be free of backward-flow

restrictions, giving AA <— and TT *— 0. For case (2), as soon as path P makes

an unmatched return r to a call G T, then by Definition 1 what d can affect is no

longer constrained by A and T, and this freedom from constraint by A and T passes

by transitivity to dd because d affects dd.

When K is defined for P, the unmatched return r in P that immediately pre-

cedes the beginning of K, means that any unreturned calls in P are also in K. This

is because all call instances within P are more recent than the call instance that

matches the unmatched return r. Thus, by Assumption 1 all call instances in P

preceding the return r must be returned to in P before r can occur. Therefore, P has

no unreturned calls because K has no unreturned calls. Thus, dd is free of backward-

flow restrictions since v4, T, and P contribute nothing in the way of constraint, giving

AA^% and TT ^ ^. D

Theorem :2. If (1) A = 0, and P has at least one unreturned call, or (2) A ^ 0,

K is defined for P, and K has at least one unreturned call, then AA *—
[j^\\ g^^h P

{the unreturned calls of P}, and TT *- Uajj ^^^t^ P {^^^ ^^^t unreturned call in P].

Proof. For case (1), A and T contribute nothing in the way of constraint

to AAp and TTp. Because d affects dd along path P which contains unreturned

calls, by Assumption 1 those unreturned calls must be returned to first before any

other unreturned calls can be made from the execution-path continuation point of dd

onward. Hence, AAp <— {the unreturned calls of P]. Because d had no backward-

flow restrictions, it follows that once all the unreturned calls of P are returned to

by the execution-path continuation, then that continuation would no longer have

any backward-flow restrictions. Because of Assumption 3 and Lemma 1, all the

unreturned calls of P are returned to when the sequentially first unreturned call in

P is returned to. Hence, TTp <— {the first unreturned call in P]. For case (2), as
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shown in the proof of Theorem 1 case (2), A and T contribute nothing to AAp and

TTp when K is defined for P. Thus, this case (2) is effectively the same cis case

(1), because the A and T sets contribute nothing and an unreturned call in K is an

unreturned call in P. Therefore, AAp <— {the unreturned calls of P} and TTp <—

{the first unreturned call in P}.

From Definition 1 and the general definitions of AA, TT, AAp, and TTp, it

follows that AA ^ Uall such P ^^p ^nd TT *- Uall such P ^^^- Thus, AA ^-

Uall such P i^^^ unreturned calls of P}, and TT *—
Uall such P ^^^^ ^^^^ unreturned

call in P}. D

Theorem 3. U A ^ 0, K is not defined for P, and P has no unreturned calls,

then AA <— {x
|

a: € A A (x is part of a possible execution path that inclusively

begins with a call € T and ends with a call of the procedure containing dd, such that

each unreturned call in this possible execution path is in >1)}, and TT <— AA D T.

Proof. Note that only one procedure contains dd. Because K is not defined for

P, it follows that P was constrained in its entirety by A, never making an unmatched

return to a call € T. Because P has no unreturned calls, d can only affect dd along

P by making one or more unmatched returns to calls G (A - T"), unless d and dd are

in the same procedure.

A, in effect, represents possible execution paths with unreturned calls by which

d was affected. However, once given P, the path P may eliminate some of the

paths from A as being possible, and return to some of the unreturned calls in A.

Thus, although P contributes nothing directly to AA, it may narrow the unreturned

execution-path possibilities that A can contribute to AA. AA as defined for this

theorem, captures all execution paths in A that begin with a call G T and end with

a call of the procedure that contains dd. Given Assumption 3, it should be obvious

that these are all the possible paths in A that are unreturned after P. Note that

if d and dd are in the same procedure, then AA = A and TT = T. Assume that
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d and dd are in different procedures. Any call € A that is not part of at least one

path in A that makes a call of the procedure containing dd, must be excluded from

AA because P requires a path in A that passes through the procedure containing

dd, because otherwise P could not make a return to the procedure containing dd.

Any call € A that is on a path in A between the procedure containing dd and the

procedure containing d, must be excluded from AA because the procedure containing

dd has been returned to by P. The definition of AA for this theorem satisfies these

two exclusions.

That TT <— AA D T follows from Definition 1 requiring TT C AA, and from

the definition of AA for this theorem.

Theorem 4- li A j^ 0, K is not defined for P, P has at least one unreturned

call, and the first unreturned call in P is contained in procedure X, then Si <—

Uall such P given X ^^^^ unreturned calls of P}, and S2 *— {x
\
x ^ A /\ {x is part

of a possible execution path that inclusively begins with a call G T and ends with

a call of the procedure X, such that each unreturned call in this possible execution

path is in A)}, AA ^ Si U S^, and TT <- ^2 n T.

Proof. Si follows from Definition 1 and the proof of Theorem 2. 52 follows from

Theorem 3, where the specific "procedure containing dd^'' in the expression for AA in

Theorem 3 has been replaced by the equally specific "procedure X".

That the union operation of AA, combining Si and ^2, does not thereby repre-

sent spurious paths in AA, it is only necessary to show that the paths represented in

^i never cross with the paths represented in S^- Two paths cross if each path makes

an unreturned call to the same procedure. All paths in ^2 end with an unreturned

call of procedure X. All paths in Si begin with an unreturned call contained in

procedure X. Assume that both ^i and 5*2 include an unreturned call to the same

procedure. As all paths in ^2 lead to procedure X, this means there exists an exe-

cution path that originates in procedure X and eventually calls procedure X. Thus,



www.manaraa.com

53

d
cl c2

dd

Figure 3.1. An example call structure that does not allow overestimation.

the execution path represents recursion, and this is contradicted by Assumption 3.

Therefore, the paths represented in Si never cross with the paths represented in 5*2.

The first unreturned call in P is not added to TT because the path P is an

extension of the unreturned paths represented in 5*2 . That TT ^— 5*2 nT* follows from

Definition 1 requiring TT C AA, and from the definition of AA for this theorem.

The four theorems given above will be used to build the algorithm given in

the next section. In effect, a given Allow set represents possible execution paths

with unreturned calls by which the definition associated with that Allow set was

affected. Inversely, the Allow set identifies, in effect, those continuation paths that

can make unmatched returns. However, missing from the Allow set is the information

needed to enforce an ordering of the unmatched returns that the continuation path

may make. To a large extent, this missing information is unnecessary because of

Lemma 1. Typically, the call structure of the program itself enforces the ordering of

the unmatched returns. Figure 3.1 is an example. Assume d affects dd, giving an

Allow set of {cl,c2} for dd. Given a continuation path from dd, it is not possible

for cl to be returned to before c2, so the correct ordering of unmatched returns is

enforced by the program itself. However, there are cases where the missing ordering

information can result in a continuation path taking unwanted shortcuts.

Figure 3.2 gives an example of a call structure that allows the continuation path

from dd to make an unwanted shortcut when given the right circumstances. Assume

d affects dd along the paths cl-c2 and c3-c4, giving an Allow set of {cl,c2,c3,c4} for

dd. Assume the continuation path is r2-c5-r3, where r2 and r3 are unmatched returns
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Figure 3.2. An example call structure that allows overestimation.

to calls c2 and c3. The unmatched return r3 should not be allowed to happen before

an unmatched return r4, but this unmatched-return ordering will not be enforced

by the Allow set defined in this dissertation, so the assumed continuation path is

possible. By virtue of such a spurious continuation path, dd may be able to affect

a definition or use that it would not otherwise be able to affect, assuming dd were

confined to only legitimate continuation paths. In practical terms, this means that

the computed logical ripple effect that consists of affected definitions and uses may

in fact be an overestimate because of spurious continuation paths. Although the

Allow set does permit spurious continuation paths under the right circumstances, of

which Figure 3.2, and the assumed paths by which d affected dd, are the most simple

example, we feel that these circumstances, along with spurious paths that affect

what would otherwise be unaffected, will not occur often enough in real programs to

undermine the general usefulness of the Allow set in constraining backward flow and

permitting computation of a precise or semiprecise logical ripple effect.
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3.2 The Logical Ripple Effect Algorithm

This section presents an algorithm for computing a precise interprocedural logi-

cal ripple effect. After a brief overview of the algorithm, the dataflow analysis method

used by the algorithm is discussed. Then, two important properties of the dataflow

sets are detailed, followed by three rules that are used to impose backward-flow re-

strictions on the dataflow analysis that is done. Last are proofs that the algorithm

is correct.

The algorithm to compute logical ripple effect is shown in Figure 3.3. Each

statement in the algorithm is numbered on the left. For convenience, algorithm

statements will be referred to as lines. For example, a reference to line 28 means the

statement at 28 that actually is printed on several lines. Comments in the algorithm

begin with —. J. and T are just two different, fixed, arbitrary values.

In general, the algorithm works as follows. A definition d and its associated

Allow and Transform sets are popped from the stack (line 7), and then the reaching-

definitions dataflow problem is solved for this definition J, imposing any backward-

flow restrictions represented by the Allow and Transform sets (line 8). Reaching

definitions for a single definition is the problem of finding all uses and definitions

affected by the definition. The definition d that was dataflow analyzed, and any

uses affected by it, are included in the ripple effect (lines 9 to 11). Each affected

definition will have its Allow and Transform sets determined in accordance with

Theorems 1 through 4 (lines 22 to 46). A check is then made to see if the affected

definition and its restriction sets. Allow and Transform, should be added to the stack

for dataflow analysis or not (lines 47 to 52). The algorithm ends when the stack is

empty. Although the algorithm shows a single definition b being added to the stack at

line 5, any number of different b can actually be added, along with empty restriction

sets for each 6.
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— Compute the logical ripple effect for a hypothetical or actual definition b

— Input: a program flowgraph ready for dataflow analysis

— Output: the logical ripple effect in RIPPLE
begin

1 RIPPLE ^
2 for each definition dd in the program

3 FINdd ^ ±
end for

4 stack *—

5 push (6, 0, 0) onto stack

6 while stack 7^ do

7 pop stack into (J, ALLOW, TRANSFORM)
8 Solve the reaching-definitions dataflow equations for the single definition d,

using Rules 1, 2, and 3.

9 RIPPLE ^ RIPPLE U {d}

10 for each use u in the program that is affected by either d^ or d2

11 RIPPLE ^ RIPPLE U {u}

end for

12 ROOTl ^ 0, LINKl ^ 0, R00T2 .- 0, LINK2 ^
13 for each call node n in the flowgraph

14 if di 6 Bout[n] and (fi crossed from this call into the called procedure

15 ROOTl ^ ROOTl U {the call node n}

fi

16 if di € Eout[n] and di crossed from this call into the called procedure

17 LINKl ^ LINKl U {the call node n}

fi

18 if d2 € Boutin] and c?2 crossed from this call into the called procedure

19 R00T2 ^ R00T2 U {the call node n}

fi

20 if 0^2 G Eoutln] and ^2 crossed from this call into the called procedure

21 LINK2 ^ LINK2 U {the call node n}

fi

end for

Figure 3.3. The logical ripple effect algorithm.
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22 for each definition dd in the program that is affected by either di or c^2

— determine Allow and Transform for dd by Theorem 1

23 if d2 € Bin [node where dd occurs]

24 PATHS ^ 0, TRANS ^
25 call Analyze

else

— determine Allow and Transform for dd by Theorem 2

26 if ^2 € £',„[node where rfcf occurs]

27 PATHS ^
28 PATHS ^{x\xe (R00T2 U LINK2) A {x calls the procedure

that contains dd \/ x calls a procedure that contains

a call c e (PATHS n LINK2))}
29 TRANS *- R00T2 n PATHS
30 call Analyze

fi

— determine Allow and Transform for dd by Theorem 3

31 if <ii € Bin[node where dd occurs]

32 PATHS ^
33 PATHS <- {x

I

X € ALLOW A {x calls the procedure that contains dd

V X calls a procedure that contains a call c 6 PATHS)}
34 TRANS ^ TRANSFORM n PATHS
35 call Analyze

fi

— determine Allow and Transform for dd by Theorem 4

36 if di G Ein[node where dd occurs]

37 for each procedure X that contains a call G ROOTl
38 RTl <— {x

I

X e ROOTl A x is contained in procedure A'}

39 PP ^
40 pp ^ {x\xe (RTl U LINKl) A (x is on a path that inclusively

begins with a call e RTl and ends with a call of the

procedure that contains dd, such that each call

in this path is in (RTl U LINKl))}
41 if PP ^
42 PATHS ^
43 PATHS ^ {x

I

X e ALLOW A (x calls procedure X V x calls

a procedure that contains a call c G PATHS)}
44 TRANS ^ TRANSFORM n PATHS
45 PATHS ^ PATHS U PP
46 call Analyze

end statements: fi, end for, fi, fi, end for, od
end

Figure 3.3. - continued.
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Procedure Analyze

begin

— avoid repetition of dd dataflow analysis if possible

47 if FlNdd / T A (PATHS =
V (true for all saved pairs for dd: PATHS ^ P V TRANS ^ T))

48 if PATHS =
49 FIN,<i ^ T
50 push {dd, 0, 0) onto stack

else

51 save PATHS and TRANS as the pair P x T for dd

52 push {dd, PATHS, TRANS) onto stack

fi

fi

end

Figure 3.3. - continued.

The dataflow equations referred to in line 8 are shown in Figure 3.4. These

equations are copied from Chapter 2 that presents a method for context-dependent

flow-sensitive interprocedural dataflow analysis. The method consists of solving

—

using the standard iterative algorithm—the dataflow equations shown in Figure 3.4,

for the program flowgraph required by the equations. The method in Chapter 2

includes a solution to the problems of parameter aliasing and implicit definitions,

that are part of the interprocedural reaching-definition problem. We assume that the

full method of Chapter 2 would be used, but we do not discuss these side issues in

this chapter as they are not directly relevant to the algorithm. Note that there are

other methods for context-dependent flow-sensitive interprocedural dataflow analysis

[3, 9, 17, 21], but the method of Chapter 2 has precision and efficiency advantages

over the other methods cited.

Referring to the dataflow equations of Figure 3.4, four sets are computed for

each flowgraph node: two body sets, 5,„ and Bout, and two entry sets, £".„ and Eout-

All body and entry sets are initially empty. As the equations will be solved for only

a single definition d, the GEN set for the node where d occurs—i.e. the node whose
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For any node n.

IN[n] = Ein[n] U Bi4n]

OUT[n] = Eout[n]U Boutin]

Group I: n is an entry node.

5.n[n] =

Ein[n]= U {x
\
X e OUT[p] A Ci}

p 6 pred{n)

Boutin] = GEN[n]

Eout[n] = E,4n] U RECODE[n]

Group II: n is a return node, p is the associated call node and q is the exit node of

the called procedure.

Bin[n] = {x\{xe Bout[p] A (CT V (Ci A C2 A x € Eout[q]))) V (a: € Bout[q] A C2)}

Ein[n] = {xe Eoutip]
I
CT V (Ci A C2 A X e Eout[q])}

Boutin] = (B.„[n] - KILLln]) U GENln]

Eoutln] = E,4n] - KILLln]

Group III: n is not an entry or return node.

BinH = U Boutip]

p 6 pred{n)

Einln] = U Eoutlp]

p G pred{n)

Boutin] = (fi.„[n] - KILLln]) U GENln]

Eoutln] = Einln]-KILL[n]

Figure 3.4. Dataflow equations for the reaching-definitions problem. ;
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associated block of program code contains the definition d—will contain an element

representing d, and all the other GEN sets will be empty. The node where d occurs

is the natural starting point for the iterative algorithm, that will recompute the body

and entry sets for the nodes until stability is attained and the sets cease to change, at

which point the equations have been solved. Once solved, an element is in the entry

set or body set at a particular node depending on how that element was propagated

to that node. The same element may be in both sets at the same node. Properties 1

and 2 listed below, summarize those implications of set membership that are used by

the algorithm. The properties follow directly from the dataflow equations.

Property 1. For any node n, an element is in the -E,„[n] set or £ouf ["] set if and

only if that element entered the procedure that contains node n from a call node,

and there is a definition-clear path from that call node to node n. Thus, membership

in the entry set of node n implies that the element can propagate to node n by an

execution path that makes at least one unreturned call between the point where the

element is generated and the point where node n occurs.

Property 2. For any node n, an element is in the Bin[n] set or 5out[n] set if

and only if that element was generated in the same procedure that contains node n,

or that element entered the procedure that contains node n from an exit-node Bout

set. There must also be a definition-clear path to node n from either the element's

generation node or from the exit node. If the element entered from an exit-node

Bout set, then Property 2 applies recursively to the element in that Bout set. Thus,

membership in the body set of node n implies that the element can propagate to

node n by an execution path between the point where the element is generated and

the point where node n occurs that does not include any unreturned calls.

The three rules referred to in line 8 are listed below. Rule 1 applies before

the dataflow equations are solved. Rules 2 and 3 apply as the equations are being
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solved. The rules impose the backward-flow restrictions represented by the ALLOW

and TRANSFORM sets in line 7.

Rule 1. IfALLOW = then element 8.2 is generated at the node where definition

d occurs, otherwise d\ is the generated element, meaning the element in the GEN

set. Both di and c^2 are base elements that represent the same definition d. Both

elements are identical in terms of when they appear in any given KILL set. The

only difference between them is that di and d2 are treated differently by Rules 2 and

3 below.

If the ALLOW set is empty, then by Definition 1 there should be no backward-

flow restrictions on d. Rule 1 accomplishes this requirement, as ^2 's immune to

backward-flow restrictions which are imposed by Rule 2.

Rule 2. Let n be a return node, p be the associated call node, and q be the

exit node of the called procedure. Each time the 5,„[n] equation is computed, if

d\ € Bout[q], then d^ cannot cross from Bout[q] into the 5,„[n] set if p ^ ALLOW.

In the dataflow equations, the crossing of an element from an exit-node body

set to a return node is the only action in the equations that represents, in effect, an

unmatched return to a call instance that was made in an execution path leading up

to the program point where definition d occurs, which is the starting point of the

reaching-definition analysis done for d. Thus, Rule 2 covers all cases in which an

unmatched return occurs. Rule 2 restricts unmatched returns to those call instances

that are represented in the ALLOW set, thereby realizing the purpose of the ALLOW

set as given by Definition 1.

Rule 3. Let n be a return node, p be the associated call node, and q be the

exit node of the called procedure. Each time the Bin[n] equation is computed, if

di e Bout[q], and, by C2 and Rule 2, di can cross from Bout[q] into the 5,„[n] set,

and p G TRANSFORM, then as this di element crosses from Bout[q] into the B,„[n]
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set, the element is changed to d2. In effect, di is transformed into d2, and the return

node n becomes a generation node for the d2 element.

As already mentioned, in the dataflow equations the crossing of an element

from an exit-node body set to a return node is the only action in the equations that

represents, in effect, an unmatched return to a call instance that was made in an

execution path leading up to the program point where definition d occurs, which

is the starting point of the reaching-definition analysis done for d. Thus, Rule 3

covers all cases in which an unmatched return occurs. The requirement by Rule 3

that the returned-to call be in the TRANSFORM set satisfies Definition 1 as to

when backward-flow restrictions can be ignored. Rule 3 replaces element di, which is

subject to the backward-flow restrictions, with element d^, which is free of backward-

flow restrictions, at the return point and thereby satisfies Definition 1 regarding

removal of backward-flow restrictions on the execution-path continuation, since d^

now represents the continuation instead of di

.

Lemma 2. The algorithm computes at lines 23 to 46 the restriction sets for an

affected definition in accordance with Theorems 1 through 4.

Proof. We first establish the properties of the LINK and ROOT sets computed

at lines 12 to 21. Let p be the node, if any, where d^ is generated. Let q be any node

where ^2 is generated, i.e. those return nodes where dx is transformed into (^2, or for

ALLOW = the node where definition d occurs.

The tests at lines 14 and 18 make use of Property 2: if an element is in the Bout

set of a call node n, then there exists a definition-clear path between the node where

the element is generated and node n, and the path has no unreturned calls. The call

at node n would be the first unreturned call on that path by just extending the path

to the entry node of the called procedure. Therefore, the ROOTl set represents all

calls that are the first unreturned call on at least one definition-clear path between

node p and some other node in the flowgraph. The R00T2 set represents all calls
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that are the first unreturned call on at least one definition-clear path between node

q and some other node in the flowgraph.

The tests of lines 16 and 20 make use of Property 1: if an element is in the Eout

set of a call node n, then there exists a definition-clear path between the node where

the element is generated and node n, and the path includes the unreturned call that

called the procedure containing node n. The call at node n would be at least the

second unreturned call on that path by just extending the path to the entry node

of the called procedure. Therefore, the LINKl set represents all calls that are an

unreturned call but not the first unreturned call on at least one definition-clear path

between node p and some other node in the flowgraph. The LINK2 set represents

all calls that are an unreturned call but not the first unreturned call on at least one

definition-clear path between node q and some other node in the flowgraph.

The test at line 23 checks for the application of Theorem 1. If c?2 G i?,„[node

where dd occurs], then by Property 2 there exists a definition-clear path P between

d and dd that has no unreturned calls, and somewhere along P, d2 is generated,

meaning either ALLOW = or /C is defined for P. This satisfies the conditions of

Theorem 1, and line 24 sets PATHS and TRANS to empty in accordance with the

theorem. PATHS and TRANS are the Allow and Transform sets for dd.

The test at line 26 checks for the application of Theorem 2. If d2 G £^,„[node

where dd occurs], then by Property 1 there exists at least one definition-clear path

P between d and dd that has at least one unreturned call, and somewhere along P,

^2 is generated, meaning either ALLOW = or K is defined for P. This satisfies

the conditions of Theorem 2. Only the c?2 element satisfies the theorem, so it follows

that all paths P for the theorem will have to be constructed from the R00T2 and

LINK2 sets exclusively.

Referring to Theorem 2, line 28 computes the AA set, and line 29 computes

TT. For line 28, the PATHS set is defined in terms of itself. This recursive reference
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means that each time a call is added to the PATHS set, the condition containing

the recursive reference must be reevaluated, because additional calls may thereby be

added to PATHS. Recursive references are similarly used in lines 33 and 43. What

line 28 does is extract from all the calls that element di crossed, just those calls that

are on a path to dd. This is done by building the paths backwards, beginning with

those calls that call the procedure containing dd. By Lemma 1, any path between d

and dd consisting of unreturned calls can be found by proceeding in reverse order from

dd and selecting those calls that call a procedure containing a call already selected.

Backward path building and Lemma 1 are similarly used in lines 33 and 43. By the

properties of the ROOT and LINK sets, the paths constructed by line 28 will be

definition-clear. Notice that a particular call may be in both the R00T2 and LINK2

sets, but if a call is only in the R00T2 set, then it cannot be used as the basis for

extending further backwards any path, because by Property 1, d^ does not propagate

from the entry node of the procedure that contains that call, to the call node for that

call. This is the reason for the (PATHS n LINK2) requirement in line 28. Once the

PATHS set is computed, line 29 computes TRANS in accordance with the theorem.

The test at line 31 checks for the application of Theorem 3. If di 6 5,„[node

where dd occurs], then by Property 2 there exists a definition-clear path P between

d and dd that has no unreturned calls. It also follows that ALLOW 7^ and P

does not make an unmatched return to a call € TRANSFORM, because di is the

element, meaning K is not defined for P. This satisfies the conditions of Theorem 3.

Referring to Theorem 3, line 33 computes the AA set, and line 34 computes TT.

What line 33 does is extract from ALLOW all paths that end with a call of the

procedure containing dd. Although Theorem 3 states that the path begin with a call

G TRANSFORM, line 33 does not require a check for this because TRANSFORM is

a subset of ALLOW and those first unreturned calls in TRANSFORM that are on a

path in ALLOW to dd, will unavoidably be picked up as the paths are built backwards
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from dd. Thus, the PATHS set is computed in accordance with Theorem 3, followed

by line 34 that computes the TRANS set in accordance with the theorem.

The test at line 36 checks for the application of Theorem 4. If di G ^,v,[node

where dd occurs], then by Property 1 there exists at least one definition-clear path P

between d and dd that has at least one unreturned call. It also follows that ALLOW

^ and P does not make an unmatched return to a call G TRANSFORM, because

di is the element. This satisfies the conditions of the theorem. Only the di element

satisfies the theorem, so it follows that all paths P for the theorem will have to be

constructed from the ROOTl and LINKl sets exclusively. Referring to Theorem 4,

line 40 computes the Si set, line 43 computes the S^ set, line 44 computes the TT set,

and line 45 computes the AA set. The reason for the test at line 41 is that although

there exists at least one path P satisfying the theorem, there may not be any paths

P that begin in the specific procedure X. It can be seen that lines 37 to 46 compute

in accordance with the theorem.

Lemma 3. Let Ai and T, be one pair of Allow and Transform sets associated

with a definition </, and let Aj and 7} be a different pair of Allow and Transform sets

associated with the same definition d. Assume A, ^ and Aj ^ 0. If Aj C A, and

Tj C 7v, then dataflow analyzing d with the pair Aj and Tj cannot add anything to

the ripple effect that is not added by dataflow analyzing d with the pair A, and T,.

Proof. By inspection of Rules 1, 2, and 3, it can be seen that removing some

of the calls from Ai or T", cannot make d affect anything that it does not affect with

Ai and T,- as they were. Also, by inspection of lines 23 to 46, the determination of

the Allow and Transform sets for any definition dd affected by <f, cannot be made to

include calls when Aj and Tj are the restriction sets for d, that would not be included

when Ai and T", are the restriction sets for d.

Lemma 4- Let A and T be Allow and Transform sets associated with a definition

d, and let X and K be a different pair of Allow and Transform sets associated with
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the same definition d. If A = 0, then dataflow analyzing d with X and Y cannot add

anything to the ripple effect that is not added by dataflow analyzing d with A and

T.

Proof. By Rule 1, d will be represented by d2 and have no restrictions on its

backward flow. Thus, d will affect everything that it is possible for it to affect. If d

is dataflow analyzed with X and Y, then any calls found in the ROOTl, R00T2,

LINKl, or LINK2 sets will also be found in the R00T2 or LINK2 sets when d is

dataflow analyzed with A and T. These sets determine the restriction sets associated

with a definition dd affected by d. It follows that any dataflow path allowed for a dd

affected by d using X and Y, will also be allowed for a dd affected by d using A and

T. D

Theorem 5. Given Definition 1 and Theorems 1 through 4, the algorithm will

correctly compute the logical ripple effect.

Proof. As shown by Lemma 2, for any affected definition dd, the Allow and

Transform sets to be associated with dd are computed in accordance with Theorems 1

to 4. By Lemma 4, if Theorem 1 applies to an affected definition (line 23), then there

is no need to check if any other theorem also applies, because additional dataflow

analysis resulting from the other theorems cannot contribute to the ripple effect.

However, if Theorem 1 does not apply, then the definition must be dataflow analyzed

separately in turn for each theorem that does apply. This is done by the sequence of

three if statements at lines 26, 31, and 36. Thus, the control logic in lines 23 to 46 is

safe.

The Analyze procedure (lines 47 to 52) prepares a definition and its restriction

sets for dataflow analysis by adding them to the stack (line 50 and 52). Once a defi-

nition will be dataflow analyzed with no restrictions (line 50) it will not be analyzed

again (line 47). By Lemma 4, this is safe. Assuming FINdj ^ T and PATHS ^ 0, the

test at line 47 will not prepare a definition for dataflow analysis if both restriction sets
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are subsets of any pair of restriction sets used previously to analyze that definition.

This follows from Lemma 3. Thus, the Analyze procedure is safe.

The correctness of the dataflow equations (line 8) is established in Chapter 2,

and the correctness of the three rules for imposing backward-flow restrictions (line 8)

has already been discussed. Regarding the correctness of having no backward-flow

restrictions for the initial definition (line 5), let p be the program point where 6 occurs.

For execution to attain point p, any possible execution path between the program's

execution starting point and point p can be assumed to have occurred. Thus, there

should be no restrictions on the backward-flow possibilities of 6, because there were

no constraints imposed by the ripple effect on how point p was initially attained.

Programs with recursive calls can be processed by our algorithm, but there may

be some overestimation of the logical ripple effect because of the recursive calls. The

dataflow equations (line 8) are not the problem, as they work for recursive programs.

Instead, the problem is with the Allow set and its representation of execution paths.

If a cyclic execution path is represented in the Allow set, then when the Allow set is

used to restrict backward flow by Rule 2, it may be possible for an element moving

through the program flowgraph to take a shortcut on its unmatched returns and avoid

having to make unmatched returns along the complete cycle before a program point

can be attained. This shortcut may permit the element to affect something that it

should not be able to affect, possibly adding to the ripple effect beyond what should

be there.

3.3 A Prototvpe Demonstrates the Algorithm

This section first considers the complexity of our interprocedural logical ripple

effect algorithm. A prototype that demonstrates the algorithm is then described, and

test results presented.
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Let n be the number of nodes in the flowgraph of the input program. For a

programming language such as C, solving the dataflow equations for a single defi-

nition, which is what line 8 does, has worst-case complexity of 0{n). Let k be the

number of known calls in the input program. Considering line 47, a definition may be

dataflow analyzed repeatedly as long as the associated restriction sets are not subsets

of any previous pair of restriction sets used to dataflow analyze that definition. The

number of different restriction sets possible such that no set is a subset of another

set, is clearly a number that will grow exponentially with k. Thus, the worst-case

complexity of our logical ripple effect algorithm is exponential, where the exponent

is some function of k. However, for the typical input program, the actual number of

non-subset restriction sets that can be generated by our algorithm for a given defini-

tion, will be severely constrained by a combination of Lemma 1, Theorems 1 through

4, and the typical program call structure that is characterized by shallow call depth.

A prototype that demonstrates our logical ripple effect algorithm has been built.

The prototype accepts as input C programs that satisfy certain constraints, such as

having only single-identifier variable names. Given an input program, the prototype

then requires that one or more definitions be identified as the starting point of the

ripple effect. For purposes of comparison, besides using our algorithm to compute

a precise logical ripple effect, the prototype also computes an overestimate of the

logical ripple effect. The overestimate is computed by simply ignoring the execution-

path problem, i.e. there are no backward-flow restrictions when the overestimate is

computed. The worst-case complexity of computing the overestimate for C programs

is only 0{nd) where n is the number of flowgraph nodes and d is the number of

definitions in the overestimated ripple effect. This complexity follows from the 0{n)

complexity of solving the dataflow equations for a single definition, and the fact that

the equations will have to be solved d times.
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Table 3.1. Experimental results for the prototype.

globals defs defs global depth nodes RSo RSp reduction timeo timCp

50 2420 7% 2/213 3939 2275 936 53.4% 5s 3s

100 2291 15% 2/188 3776 4151 2449 41.0% 17s 13s

200 2294 30% 2/188 3662 5594 3718 33.5% 40s 32s

300 2370 45% 2/231 3962 5897 2607 55.8% lm5s 27s

50 2225 7% 3/202 3717 1222 633 40.3% 3s 2s

100 2333 15% 3/229 3864 4139 1867 54.9% 17s 7s

200 2211 30% 3/231 3760 4884 2688 45.0% 39s 28s

300 2236 45% 3/205 3737 5308 3505 34.0% 59s 38s

50 2320 7% 4/227 3912 1822 1067 35.1% 5s 3s

100 2211 15% 4/228 3673 4329 1525 64.8% 18s 7s

200 2223 30% 4/227 3705 5019 1918 61.8% 37s 16s

300 2214 45% 4/214 3648 5922 4740 20.0% lm9s lm36s

100 4354 7% 2/372 6858 4317 2201 40.0% 19s IDs

200 4467 15% 2/368 7068 8844 6457 27.0% lml7s lml2s

400 4261 30% 2/388 6851 9653 2976 69.2% 2m29s 49s

600 4289 45% 2/340 6784 10590 6840 35.4% 4m8s 3m56s

100 4314 7% 3/432 6781 1993 631 52.5% 8s 2s

200 4268 15% 3/395 6876 5795 3236 35.5% 51s 54s

400 4223 30% 3/393 6735 9240 7307 20.9% 2m26s 4m21s

600 4248 45% 3/433 6868 9772 6453 30.6% 3m56s 4m50s

100 4252 7% 4/455 6961 2756 1120 42.6% 14s 5s

200 4276 15% 4/440 6858 7781 5752 26.1% ImlOs 2m35s

400 4228 30% 4/391 6681 9838 8290 15.7% 2m45s 9m20s

600 4112 45% 4/462 6802 10017 9192 8.2% 4m24s 39m55s

Table 3.1 presents test results for the prototype. Each row details relevant char-

acteristics of an input program, and presents the resulting averages of ten different

tests of that input program, where each test computed the ripple effect started by a

single, randomly chosen definition of a global variable.

The input programs of Table 3.1 were randomly generated by a separate pro-

gram generator. The generated input programs are syntactically correct and compile

without error, but have meaningless executions. Each input program of Table 3.1 has

100 procedures, and exactly the number of global variables listed. Within each input
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program, each global variable is defined and used at least once. The call structure of

each input program was determined randomly by the generator, with the constraint

that there be no recursion in the input program, and the given maximum call depth

not be exceeded by any call in the input program. All calls in the generated input

program are known calls, and approximately l/(max + 1) of the calls will be at each

possible depth from zero to max, where max is the given maximum call depth.

Referring to the columns of Table 3.1, "globals" is the number of global variables

in the input program, "defs" is the number of definitions in the input program, "defs

global" is the percentage of the definitions that define a global variable, "depth" is

the maximum call depth followed by the total number of calls in the input program,

"nodes" is the number of nodes in the flowgraph, "RSo" is the average size of the

overestimated ripple effect for the ten test cases where size is the total number of

definitions and uses in the ripple effect, "RSp" is the average size of the precise

ripple effect, "reduction" is the average percentage reduction for the ten test cases

of the size of the overestimated ripple effect when it is replaced by the precise ripple

effect, "timco" is the average CPU usage time for each test case to compute the

overestimated ripple effect, and "timep" is the average CPU usage time for each test

case to compute the precise ripple effect. The hardware used was rated at roughly

24 MIPS. As an example of the time notation used in Table 3.1, time lm36s would

be read as 1 minute, 36 seconds.

Although the worst-case complexity of our algorithm for precise logical ripple

effect is exponential, the data of Table 3.1 indicates that the expected complexity for

a wide range of input programs, given a programming language such as C, is approxi-

mated by 0{nd). This follows from the 0{nd) worst-case complexity of computing the

overestimate, and the typical closeness of timeo and timep for each row in Table 3.1.

However, the last row of Table 3.1 is instructive, because it shows that regardless of

what the expected complexity might be, there will always be specific input programs
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and starting points that require time greatly exceeding the time required to compute

the overestimate. In practice, if the computation of the precise logical ripple effect

is taking too long, then this computation can be abandoned and the overestimate

computed and used in its place. Note that our algorithm can very easily compute

the overestimate by simply modifying Rule 1 so that element d2 is always generated

in place of element di, thereby avoiding all backward-flow restrictions.

3.4 The Slicing Algorithm

This section presents the inverse form of the precise interprocedural logical

ripple effect algorithm, and the inverse form of the associated dataflow equations and

backward-flow restriction rules. Our algorithm for precise interprocedural slicing is

shown in Figure 3.5. The complexity and expected performance of this algorithm

is the same as for the precise interprocedural logical ripple effect algorithm given

previously.

For logical ripple effect, the dataflow problem solved at line 8 was reaching

definitions for a single definition. For slicing, which is the inverse problem, the

dataflow problem solved at line 8 will be reaching uses for a single use. In reaching

definitions, the definition flows in the direction of the arcs in the flowgraph, and is

killed by definitions of the same variable, and affects uses of the same variable and

any definitions directly dependent on an affected use. In reaching uses, the use flows

in the reverse direction of the arcs in the flowgraph, and is killed by definitions of the

same variable, and affects definitions of the same variable and any uses that directly

determine an affected definition. This reverse flow in the flowgraph means that the

dataflow equations solved at line 8 for the slicing algorithm must be an inverted form

of the dataflow equations that are used for the logical ripple effect algorithm. These

inverted dataflow equations are shown in Figure 3.6. The inverted rules that the

slicing algorithm uses for backward-flow restriction are given below. Notice that the

ALLOW and TRANSFORM sets will contain returns instead of calls.
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— Compute the slice for a hypothetical or actual use b

— Input: a program flowgraph ready for dataflow analysis

— Output: the slice in SLICE
begin

1 SLICE ^
2 for each use uu in the program

3 FIN„„ ^ ±
end for

4 stack *—

5 push (6, 0, 0) onto stack

6 while stack 7^ do

7 pop stack into {u, ALLOW, TRANSFORM)
8 Solve the reaching-uses dataflow equations for the single use u,

using Rules 1, 2, and 3.

9 SLICE ^ SLICE U {u}

10 for each definition d in the program that is affected by either ui or U2

11 SLICE ^ SLICE U {d}

end for

12 ROOTl ^ 0, LINKl <- 0, R00T2 ^ 0, LINK2 ^
13 for each return node n in the flowgraph

14 if ui G 5,„[n] A Ui crossed from this return into the returned-from procedure

15 ROOTl ^ ROOTl U {the return node n)

fi

16 if til € ^m[«] A ui crossed from this return into the returned-from procedure

17 LINKl ^ LINKl U {the return node n)

fi

18 if U2 € 5tn["] A «2 crossed from this return into the returned-from procedure

19 R00T2 ^ R00T2 U {the return node n}

fi

20 if U2 G ^in["] A U2 crossed from this return into the returned-from procedure

21 LINK2 ^ LINK2 U {the return node n}

fi

end for

Figure 3.5. The slicing algorithm.
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22 for each use uu in the program that is affected by either ui or U2

— determine Allow and Transform for uu by Theorem 1

23 if U2 e Bout[node where uu occurs]

24 PATHS ^ 0, TRANS *-

25 call Analyze

else

— determine Allow and Transform for uu by Theorem 2

26 if U2 G ^out[node where uu occurs]

27 PATHS ^
28 PATHS ^ {x\xe (R00T2 U LINK2) A {x returns from the

procedure that contains uu \/ x returns from a procedure

that contains a return r € (PATHS n LINK2))}
29 TRANS ^ R00T2 n PATHS
30 call Analyze

fi

— determine Allow and Transform for uu by Theorem 3

31 if Ui € Bout[node where uu occurs]

32 PATHS ^
33 PATHS *- {x

I

X G ALLOW A (x returns from the procedure that

contains uu ^ x returns from a procedure that contains

a return r G PATHS)}
34 TRANS ^ TRANSFORM n PATHS
35 call Analyze

fi

— determine Allow and Transform for uu by Theorem 4

36 if Ui € £'ou«[node where uu occurs]

37 for each procedure X that contains a return G ROOTl
38 RTl i— {x

\
X E. ROOTl A x is contained in procedure A'}

39 PP ^
40 PP ^ {x

I

X G (RTl U LINK!) A (x is on a path that inclusively

begins with a return G RTl and ends with a return from

the procedure that contains uu, such that each return

in this path is in (RTl U LINKl))}
41 if PP 7^

42 PATHS *-

43 PATHS ^ {x
I

X G ALLOW A (x returns from procedure X
V X returns from a procedure that contains

a return r G PATHS)}
44 TRANS ^ TRANSFORM n PATHS
45 PATHS *- PATHS U PP
46 call Analyze

end statements: fi, end for, fi, fi, end for, od

end

Figure 3.5. - continued.
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Procedure Analyze

begin

— avoid repetition of uu dataflow analysis if possible

47 if FIN„„ ^ T A (PATHS =
V (true for all saved pairs for uu: PATHS <2 ? V TRANS g T))

48 if PATHS =
49 FIN„„ ^ T
50 push {uu, 0, 0) onto stack

else

51 save PATHS and TRANS as the pair P x T for uu

52 push {uu, PATHS, TRANS) onto stack

fi

fi

end

Figure 3.5. - continued.

Rule 1. If ALLOW = then element U2 is generated at the node where use u

occurs, otherwise u\ is the generated element.

Rule 2. Let n be a call node, p be the associated return node, and q be the entry

node of the returned-from procedure. Each time the Bou([n] equation is computed, if

"i € Bin[q\, then Ui cannot cross from Bin[q] into the Bo^Jn] set if p ^ ALLOW.

Rule 3. Let n be a call node, p be the associated return node, and q be the entry

node of the returned-from procedure. Each time the 5out[n] equation is computed,

if ui G Bin[q], and, by C2 and Rule 2, ui can cross from 5,„[g] into the Bout[n] set,

and p G TRANSFORM, then as this U\ element crosses from 5,n[9] into the Bout[n]

set, the element is changed to U2- In effect, u\ is transformed into U2, and the call

node n becomes a generation node for the U2 element.

As the usefulness of slicing is primarily for program fault localization, it may

be desirable to modify the algorithm so that those uses in control predicates whose

subordinate statements have at least one use or definition already in the slice, are

themselves added to the slice and propagated in turn. An example of a control pred-

icate is the condition tested by an if statement. By subordinate statements is meant
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For any node n.

OUT[n] = Eout[n] U Bant[n]

IN[n] = Ei4n]UBin[n]

Group I: n is an exit node.

Boutin] =

Eout[n]= U {x\xeIN[p]AC^}
p G succ{n)

5.„[n] = GEN[n]

Ein[n] = Eout[n] U RECODE[n]

Group II: n is a call node, p is the associated return node and q is the entry node of

the returned-from procedure.

Bout[n] = {x\{xe Bin[p] A (CT V (Ci A C2 A x € E,4q]))) V (x G 5.„[g] A C2)]

Eont[n] = {xe Ei4p]
I
CT V (Ci A (72 A a; e E,r,[q])}

5,n[n] = [Boutin] - KILLin]) U GENin]

E,4n] = Eoutin]-KILLin]

Group III: n is not an exit or call node.

Boutin] = U 5,„[p]

p G succ{n)

Boutin] = U ^.„[p]

p € succ{n)

B,nin] = (5o„Jn] - KILLin]) U G^A^[n]

^.•n[n] = Boutin] - KILLin]

Figure 3.6. Dataflow equations for the reaching-uses problem.
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those statements whose execution is decided by the control predicate. Including these

control-predicate uses in the slice is advantageous because the cause of a program

error may actually be in a control predicate that is not deciding correctly when to

execute its subordinate statements. Ferrante et al. [8] present a method to precisely

determine the control predicates for each statement.
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CHAPTER 4

INTERPROCEDURAL PARALLELIZATION

4.1 Loop-Carried Data Dependence

This section explains loop-carried data dependence and its relevance to paral-

lelization. When a definition of a variable reaches a use of that variable, then a data

dependence exists such that the use depends on the definition. An example of data

dependence can be seen in Figure 4.1. The use of A(I) at line 3, and the use of A(I)

at line 4, both depend on the definition of A(I) at line 2. However, when considering

whether or not a loop can be parallelized, there is a special kind of data dependence

called loop-carried data dependence [25]. A data dependence is loop carried if the

value set by a definition inside the loop during loop iteration i can be used by a use

of that variable inside the loop during loop iteration ;, where i ^ j. Note that i / j

is specified instead of the more restrictive and natural seeming i < j, because if the

loop is parallelized then the ordering of the loop iterations cannot be assumed.

The relationship between loop-carried data dependence and parallelization is

straightforward. If there is at least one loop-carried data dependence, then the loop

cannot be parallelized, otherwise the loop can be parallelized. Loop parallelization

1 DO I = 1,N

2 A(l) = B(l) * C(I) + D
3 B(I) = C(I) / D + A(I)

4 IF C(I) < THEN C(I) = A(I) * B(I) FI

END DO

Figure 4.1. An example loop.

77
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would mean that the ordering of the different iterations of the loop is unimportant,

whereas a loop-carried dependence means the opposite. If there are no loop-carried

data dependencies then there is no requirement that the iterations be ordered a

certain way. However, whenever a loop is parallelized, there should be a following,

added, serial step that sets the iteration variables, such as the I in Figure 4.1, to

whatever their values would be for the last iteration of the loop, assuming the loop

had not been parallelized. This added step would be necessary, assuming the iteration

variables of a loop are visible outside the loop and can therefore be referenced after

the loop completes. Iteration variables are those variables that are incremented or

decremented a constant value for each loop iteration. The recognition of iteration

variables is language-dependent.

Regarding data dependence and arrays, there are several efficient tests available

that determine if a data dependence is possible between a particular definition and

use of an array. The tests are the separability test, the gcd test, and the Banerjee

test. Details of these three tests can be found in [25]. The number theory behind the

tests is linear diophantine equations. A linear diophantine equation can be formed

from the array subscripts of the definition and use in question. For example, in

Figure 4.2 we want to know if A(3 * I - 5) and A(6 * I) can ever refer to the

same array element. The linear diophantine equation that relates these two array

references would be 3x-6y - 5. The question now becomes does this equation have

any integer solutions given the boundary conditions 30 < x,?/ < 100. If there is at

least one integer solution, then there would be a data dependence, otherwise there is

no data dependence, as is the case with Figure 4.2.

For the discussion that follows, we define the term loop body. The loop body

of any loop L will be all statements in the program that can possibly be executed

during the iterations of loop L. Calls are allowed in a loop, so a single loop body

could conceivably include the statements of many different procedures. For example.
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DO I = 30,100

A(3 * I - 5) =

...= A(6*I)
END DO

Figure 4.2. A loop with array references.

if a loop contains a call of procedure A, and procedure A contains a call of procedure

B, then the loop body would include all the statements of procedures A and B. In

Figure 4.1, the loop body is the four statements at Hnes 1 through 4.

With respect to the program flowgraph, the loop body is all flowgraph nodes

that may be traversed during the iterations of the loop. Let LB be the set of flowgraph

nodes that are in the loop body of loop L. Let n be the first node in the loop body

that is traversed during each iteration of the loop. The identification of node n is

language-dependent. Within the loop body of L, let definition d be a definition of

a non-array variable v, and let use u be a use of the variable v that is reached by

definition d. Let d be the node in the loop body where definition d occurs, and let

u be the node in the loop body where the use u occurs. To avoid the complications

posed by special Ccises, we assume that d, n, and u are separate and distinct nodes.

Although use u depends on definition d because definition d reaches use u,

this data dependence can prevent parallelization of loop L only if the dependence is

loop carried. Let P be a sequence of flowgraph nodes drawn from LB, such that P

represents a possible execution path along which definition d can reach use u. For

definition d to be loop-carried to use u along path P, the three nodes, d, n, and u,

must be in P, and in that order, because only the traversal of node n represents the

transition to a different iteration of the loop. If v is an array, then we assume that

definition d and use u may refer to different array elements during the same iteration.

For this reason, a path P that includes the nodes d, u, n, d, u, in that order, must
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be cLssumed to show a loop-carried data dependence when v is an array, whereas this

path P does not show a loop-carried data dependence if definition d and use u always

refer to the same storage location during any iteration, as we assume is the case when

t; is a non-array, because in any iteration that follows such a path P, the value used

at use u is always the value defined at definition d in that same iteration.

4.2 The Parallelization Algorithm

This section presents in Figure 4.3 an algorithm that identifies loops that can be

parallelized, including loops that contain calls. The algorithm uses our interprocedu-

ral dataflow analysis method as an integral step to determine data dependencies. The

loops that can be parallelized are those loops that are not marked by the algorithm

as inhibited.

The algorithm has three distinct steps. First, the reaching-definitions dataflow

problem is solved for the input program by using our interprocedural dataflow analysis

method. Second, the quality of the reaching-definition information computed by the

first step is possibly improved in the case of array references by using the separability,

gcd, and Banerjee tests. Third, individual <f, u pairs that represent data dependence

are examined for loop-carried data dependence.

At line 7, the definitions and uses of iteration variables are excluded from testing

for loop-carried data dependence, because for any iteration the iteration variables will

have constant values that can be precomputed if loop L is parallelized. The test at

line 8 is a necessary condition for the P-test procedure to return a T, which is tested

for at line 9. The test at line 8 is done as an economy measure to avoid, when

possible, the more costly P-test.

Procedure P-test uses a straightforward algorithm that begins with node d and

then spreads out examining successors, successors of successors, and so on, until either

there are no more acceptable nodes to examine, in which case F is returned, or all the

1^
requirements for path P have been met, in which case T is returned. The successors
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— a, d,u pair is a definition d that reaches a use u

— a; is the dataflow element that represents the definition d
— u is the variable referenced by definition d and use u

— to avoid complications, n ^ d ^ u is assumed
— n is the first node traversed during each loop L iteration

— d is the node whose basic block contains definition d

— u is the node whose basic block contains use u

— LB is the set of nodes in the loop body of loop L
— IV is the set of definitions of iteration variables for loop L

begin

— step 1, determine reaching definitions for the input program

1 use our method to solve the reaching-definitions dataflow problem

— step 2, improve the reaching-definition information for array references

2 for all c?, u pairs in the program, such that v is an array

3 use the separability, gcd, and Banerjee tests as applicable

4 if definition d and use u can never reference the same element

5 mark the d, u pair as non-reaching

fi

end for

— step 3, identify d, u pairs that inhibit parallelization

6 for each loop L in the program

7 for each reaching d, u pair such that d,u E LB and definition d ^W
8 ifx€5o„([n]

9 if P-test(x, n, d, u, L, LB) = T
10 mark L parallelization as inhibited by the d, u pair

fi

fi

end for

end for

end

Figure 4.3. The parallelization algorithm.
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procedure P-test(x, n, d, u, L, LB)
— is there a loop-carried data dependence from definition d to use u thru node n
— return T if yes, F if no

begin

— parti, is there a path from d io n along which x is found

11 if u is an array

12 DONE ^ {d}

else

13 DONE ^ {d, u]

fi

14 NEXT ^ [d]

15 until NEXT =
16 remove a node from NEXT, denote it p
17 for each successor node s of node p, such that s ^ DONE
18 DONE ^ DONE U {5}

19 if 5 ^ LB
Vs is an entry node

20 ignore s

21 else if 5 = n

22 goto part2

else

23 NEXT ^ NEXT U {5}

fi

end for

end until

24 return F

Figure 4.3. - continued.
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part2:

— part2, is there a path from n to w along which x is found

25 if V is an array

26 DONE ^ {n}

else

27 DONE ^ {n, d]

fi

28 NEXT ^ {n}

29 until NEXT =
30 remove a node from NEXT, denote it p
31 for each successor node s of node p, such that s ^ DONE
32 DONE ^ DONE U [s)

33 if 5 LB
V5 is an exit node

V(5 is contained in the same procedure that contains L A x ^ ^outf-?])

V(5 is not contained in the same procedure that contains L A x ^ Eout[s\)

34 ignore s

35 else \i s = u

36 return T
else

37 NEXT ^ NEXT U {s}

fi

end for

end until

38 return F
end

Figure 4.3. - continued.
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of a node are examined because normally a successor node is assumed to represent a

possible continuation of the execution path from the point of the predecessor node.

Exceptions in the algorithm involving entry and exit nodes are explained shortly.

Note that P-test only determines whether a satisfactory path P exists or not; it does

not determine what path P is in terms of an actual node sequence, as there may be

many such satisfactory paths P. Lines 13 and 27 are active when v is not an array.

In this case, a path P that includes d, u, n, d, u, in that order, is not allowed, and

this is prevented by marking the unwanted node u at line 13, and the unwanted node

d at line 27.

The test of a: ^ 5out[.s] at line 19 satisfies the requirement that the definition

d can reach along the path P. A similar test is made at line 33. At line 19, only

the B set is checked because there are no descents into called procedures, as per

the rejection of entry nodes at line 19. Entry nodes are rejected at line 19 because

any path from d to n will not leave unreturned calls, because n is an outermost node

relative to the loop body, and the path is confined to the loop body. As the successors

of each call node are an entry node and a return node, it is only necessary to check

the out set of the return node to know whether the element x survived the call or

not, and this is effectively done by the x ^ Bout[s] test already mentioned. At line 33,

exit nodes are rejected because any path from n to u will not make a return without

first making the call. This follows from the fact, already mentioned, that node n is

an outermost node relative to the loop body, and the path is confined to the loop

body. As the return node can always be added to the path P from the call node,

there is no need to add it from the exit node, hence the rejection of the exit node.

For parti and part2 in procedure P-test, each flowgraph node may appear only

once in the NEXT set, hence the complexity of the P-test procedure is 0{n) where n

is the number of flowgraph nodes. For the entire algorithm, step3 dominates, so the
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complexity is 0{lpn) where / is the number of loops in the program, p is the number

of d,u pairs in the program, and n is the number of flowgraph nodes.
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CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

5.1 Summary of Main Results

The first part of this work presented a new method for context-dependent, flow-

sensitive interprocedural dataflow analysis. The method wa^ shown to produce a

precise, low-cost solution for such fundamental and important problems as reaching

definitions and available expressions, regardless of the actual call structure of the

program being analyzed. By using a separate set to isolate calling-context effects,

and another set to accumulate body effects, the calling-context problem has been

reduced to the problem of solving the dataflow equations that compute the different

sets. These equations can be solved by the iterative algorithm. As part of our

method, the interprocedural kill effects of call-by-reference formal parameters are

correctly handled by the equations-compatible technique of element recoding.

The importance of our interprocedural analysis method lies in the fact that

a number of different applications depend on the solution of fundamental dataflow

problems such as reaching definitions, live variables, definition-use and use-definition

chains, and available expressions. Program revalidation, dataflow anomaly detection,

compiler optimization, automatic vectorization and parallelization, and software tools

that make a program more understandable by revealing data dependencies, are some

of the applications that may benefit by using our method.

The second part of this work presented new algorithms for precise interprocedu-

ral logical ripple effect and slicing. The algorithms use our interprocedural dataflow

analysis method, and add a control mechanism by which, in effect, execution-path

86
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history can affect execution-path continuation as the ripple effect or slice is built

piece by piece.

The importance of our algorithms for precise interprocedural logical ripple effect

and slicing lies in their applicability to the areas of software maintenance and debug-

ging. A precise interprocedural logical ripple effect can be used to show a programmer

the consequences of program changes, thereby reducing errors and maintenance cost.

Similarly, a precise interprocedural slice can localize program faults, thereby saving

programmer effort and debugging cost.

The third part of this work presented an algorithm that identifies loops that

can be parallelized, including loops that contain calls. The algorithm makes use of

our interprocedural dataflow analysis method to determine data dependencies, and

then the algorithm examines the data dependencies within each loop and determines

if any of these data dependencies are loop-carried, in which case parallelization of the

loop is inhibited. The algorithm has potential use in parallelization tools.

5.2 Directions for Future Research

There axe several topics of possible future research related to our method for

interprocedural dataflow analysis. Regarding solving the equations, besides the it-

erative algorithm there are elimination algorithms [20] that have better complexity.

Further studies are needed to determine to what extent these other algorithms can

be used to solve the equations. Another topic regards the dataflow problems that can

be solved by our method, as the actual universe of solvable problems remains to be

determined. We have only mentioned a few of the better known problems. For some

dataflow problems, it may be that our method can be used after suitable modification

to adapt it to the special needs of the problem.

Regarding possible future research related to our algorithms for precise inter-

procedural logical ripple effect and slicing, because the algorithms may overestimate

when recursive calls are present, or because the Allow set lacks the information needed



www.manaraa.com

88

to enforce the ordering of unmatched returns, one area of future research would be

to investigate the possibility of modifying Definition 1, Theorems 1 through 4, and

the algorithms, so as to remove the possibility of such overestimation.
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